Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Neurochem Int ; 128: 135-142, 2019 09.
Article in English | MEDLINE | ID: mdl-31002894

ABSTRACT

The arcuate nucleus (Arc) integrates circulating hormonal and metabolic signals to control energy expenditure and intake. One of the most important routes that enables the Arc to sense circulating molecules is through the median eminence (ME), which lacks a typical blood-brain barrier. However, the mechanism by which circulating molecules reach the Arc neurons remains unclear. This review focuses on what is known to date regarding the special structure and permeability of the ME vasculature and active transport of circulating molecules from the ME to the Arc. Recent studies have demonstrated that the ME displays angiogenic behavior that is expected to provide high vascular permeability. Parenchymal diffusion of circulating molecules from the ME vasculature is size-dependent, and tanycytes actively transport circulating molecules from the ME to the Arc. Finally, we highlight structural plasticity of the Arc and ME as playing an important role in maintaining energy balance homeostasis.


Subject(s)
Arcuate Nucleus of Hypothalamus/blood supply , Arcuate Nucleus of Hypothalamus/metabolism , Blood-Brain Barrier/metabolism , Energy Intake/physiology , Median Eminence/blood supply , Median Eminence/metabolism , Animals , Humans , Hypothalamus/blood supply , Hypothalamus/metabolism
2.
Acta Histochem Cytochem ; 52(1): 19-26, 2019 Feb 28.
Article in English | MEDLINE | ID: mdl-30923412

ABSTRACT

Cleft lip with or without cleft palate (CLP) usually results from a failure of the medial nasal prominences to fuse with the lateral and maxillary prominences. This failure inhibits facial morphogenesis regulated by several major morphogenetic signaling pathways. We hypothesized that CLP results from the failure of the Wnt signaling pathway. To examine whether Wnt signaling can influences upper jaw development, we applied beads soaked with Dickkopf-1 (Dkk-1), Alsterpaullone (AL) or Wnt3a to the right side of the maxillary prominence of the chick embryo. The embryo showed a defect of the maxilla on the treated side, and skeletal staining revealed hypoplasia of the premaxilla and palatine bone as a result of Dkk-1-soaked bead implantation. 5-bromo-2'-deoxyuridine (BrdU)-positive cell numbers in the treated maxillary prominence were significantly lower at both 24 and 48 hr after implantation. Down-regulation of the expression of Bmp4, Tbx22, Sox9, and Barx1 was confirmed in the maxillary prominence treated with Dkk-1, which indicated that the deformity of the maxillary bone was controlled by gene targets of the Wnt signaling pathway. Expression of N-cadherin was seen immunohistochemically in the maxillary prominences of embryos at 6 hr and increased at 24 hr after AL treatment. Wnt signaling enhanced by AL or Wnt3a up-regulated the expression levels of Msx1, Bmp4, Tbx22, Sox9, and Barx1. Our data suggest that the Wnt signaling pathway regulates maxillary morphogenesis and growth through Bmp4, Tbx22, Sox9, and Barx1. Wnt signaling might regulate N-cadherin expression via Msx1, resulting in cell aggregation for osteochondrogenesis.

3.
J Neuroinflammation ; 16(1): 39, 2019 Feb 14.
Article in English | MEDLINE | ID: mdl-30764851

ABSTRACT

BACKGROUND: Circulating endotoxins including lipopolysaccharides (LPS) cause brain responses such as fever and decrease of food and water intake, while pre-injection of endotoxins attenuates these responses. This phenomenon is called endotoxin tolerance, but the mechanisms underlying it remain unclear. The subfornical organ (SFO) rapidly produces proinflammatory cytokines including interleukin-1ß (IL-1ß) in response to peripherally injected LPS, and repeated LPS injection attenuates IL-1ß production in the SFO, indicating that the SFO is involved in endotoxin tolerance. The purpose of this study is to investigate features of the IL-1ß source cells in the SFO of LPS-non-tolerant and LPS-tolerant mice. METHODS: We first established the endotoxin-tolerant mouse model by injecting LPS into adult male mice (C57BL/6J). Immunohistochemistry was performed to characterize IL-1ß-expressing cells, which were perivascular macrophages in the SFO. We depleted perivascular macrophages using clodronate liposomes to confirm the contribution of IL-1ß production. To assess the effect of LPS pre-injection on perivascular macrophages, we transferred bone marrow-derived cells obtained from male mice (C57BL/6-Tg (CAG-EGFP)) to male recipient mice (C57BL/6N). Finally, we examined the effect of a second LPS injection on IL-1ß expression in the SFO perivascular macrophages. RESULTS: We report that perivascular macrophages but not parenchymal microglia rapidly produced the proinflammatory cytokine IL-1ß in response to LPS. We found that peripherally injected LPS localized in the SFO perivascular space. Depletion of macrophages by injection of clodronate liposomes attenuated LPS-induced IL-1ß expression in the SFO. When tolerance developed to LPS-induced sickness behavior in mice, the SFO perivascular macrophages ceased producing IL-1ß, although bone marrow-derived perivascular macrophages increased in number in the SFO and peripherally injected LPS reached the SFO perivascular space. CONCLUSIONS: The current data indicate that perivascular macrophages enable the SFO to produce IL-1ß in response to circulating LPS and that its hyporesponsiveness may be the cause of endotoxin tolerance.


Subject(s)
Cytokines/metabolism , Lipopolysaccharides/blood , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Subfornical Organ/drug effects , Animals , Calcium-Binding Proteins , Clodronic Acid/pharmacology , Dextrans/pharmacokinetics , Drug Tolerance/physiology , Glial Fibrillary Acidic Protein/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Liposomes/metabolism , Macrophages/transplantation , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins , Microscopy, Confocal , Subfornical Organ/transplantation , Time Factors , X-Rays
4.
Sci Rep ; 9(1): 284, 2019 01 22.
Article in English | MEDLINE | ID: mdl-30670717

ABSTRACT

Influenza-associated encephalopathy (IAE) is a serious complication that can follow influenza virus infection. Once a cytokine storm is induced during influenza virus infection, tight junction protein disruption occurs, which consequently leads to blood-brain barrier (BBB) breakdown. However, the details of IAE pathogenesis are not well understood. Here, we established a murine IAE model by administration of lipopolysaccharide following influenza virus infection. Brains from IAE model mice had significantly higher expression of type I interferons and inflammatory cytokines. In addition, the expression of Caveolin-1, one of the key proteins that correlate with protection of the BBB, was significantly lower in brains from the IAE group compared with the control group. We also found that, among 84 different histone modification enzymes, only SET domain bifurcated 2 (Setdb2), one of the histone methyltransferases that methylates the lysine 9 of histone H3, showed significantly higher expression in the IAE group compared with the control group. Furthermore, chromatin immunoprecipitation revealed that methylation of histone H3 lysine 9 was correlated with repression of the Caveolin-1 promoter region. These studies identify Caveolin-1 as a key regulator of BBB permeability in IAE and reveal that it acts through histone modification induced by Setdb2.


Subject(s)
Brain Diseases/virology , Brain Edema/metabolism , Caveolin 1/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Animals , Blood-Brain Barrier/pathology , Cytokines/immunology , Disease Models, Animal , Interferon Type I/immunology , Lipopolysaccharides , Methylation , Mice , Orthomyxoviridae , Orthomyxoviridae Infections/complications
5.
FEBS Lett ; 592(22): 3750-3758, 2018 11.
Article in English | MEDLINE | ID: mdl-30311946

ABSTRACT

Mitochondria are increasingly associated with inflammation. Here, we focus on the relationship between inflammation and adenine nucleotide translocator type 1 (ANT1), which is localized in the mitochondrial inner membrane. ANT1 plays an important role in oxidative phosphorylation, and mutations in the ANT1 gene are responsible for mitochondrial diseases. Ample studies have demonstrated that ANT1 has a critical role in cardiomyocytes and neurons, but little has been reported on its functions in immune cells. We knocked down ANT1 expression in macrophages and examined inflammatory cytokine expression after lipopolysaccharide stimulation. ANT1 knockdown reduces the expression of IL-6. JNK, upstream of IL-6, is downregulated, but other MAP kinases and the NF-κB signaling remain unchanged. These results suggest that ANT1 modulates IL-6 expression through JNK in macrophages.


Subject(s)
Adenine Nucleotide Translocator 1/metabolism , Interleukin-6/metabolism , MAP Kinase Signaling System , Macrophages/metabolism , Mitochondrial Membranes/metabolism , Adenine Nucleotide Translocator 1/genetics , Animals , Cells, Cultured , Gene Expression Regulation/drug effects , Interleukin-6/genetics , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Male , Mice , Mice, Inbred C57BL , RAW 264.7 Cells , RNA Interference
6.
Neurosci Lett ; 686: 67-73, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30189228

ABSTRACT

Neuropathic pain is initiated by a primary lesion in the peripheral nervous system and spoils quality of life. Neurotrophins play important roles in the development and transmission of neuropathic pain. There are conflicting reports that the dorsal root ganglion (DRG) in an injured nerve contribute to neuropathic pain, whereas several studies have highlighted the important contribution of the DRG in a non-injured nerve. Clarifying the role of neurotrophins in neuropathic pain is problematic because we cannot distinguish injured and intact neurons in most peripheral nerve injury models. In the present study, to elicit neuropathic pain, we used the spared nerve injury (SNI) model, in which injured DRG neurons are distinguishable from intact ones, and mechanical allodynia develops in the intact sural nerve skin territory. We examined nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) expression in the DRGs of SNI model mice. NGF and BDNF levels increased in the injured L3 DRG, while NGF decreased in the intact L5 DRG. These data offer a new point of view on the role of these neurotrophins in neuropathic pain induced by peripheral nerve injury.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Ganglia, Spinal/metabolism , Nerve Growth Factor/metabolism , Spinal Nerves/injuries , Animals , Disease Models, Animal , Male , Mice, Inbred C57BL , Nerve Tissue/metabolism , Neuralgia/metabolism , Neurons/metabolism
7.
PLoS One ; 13(4): e0196191, 2018.
Article in English | MEDLINE | ID: mdl-29689082

ABSTRACT

Oxidative stress contributes to myocardial ischemia-reperfusion injury, which causes cardiomyocyte death and precipitate life-threatening heart failure. Propofol has been proposed to protect cells or tissues against oxidative stress. However, the mechanisms underlying its beneficial effects are not fully elucidated. In the present study, we employed an in vitro oxidative injury model, in which rat cardiac H9c2 cells were treated with H2O2, and investigated roles of propofol against oxidative stress. Propofol treatment reduced H2O2-induced apoptotic cell death. While H2O2 induced expression of the antioxidant enzyme HO-1, propofol further increased HO-1 mRNA and protein levels. Propofol also promoted nuclear localization of Nrf2 in the presence of H2O2. Knockdown of Nrf2 using siRNA suppressed propofol-inducible Nrf2 and expression of Nrf2-downstream antioxidant enzyme. Knockdown of Nrf2 suppressed the propofol-induced cytoprotection. In addition, Nrf2 overexpression induced nuclear localization of Nrf2 and HO-1 expression. These results suggest that propofol exerts antioxidative effects by inducing nuclear localization of Nrf2 and expression of its downstream enzyme in cardiac cells. Finally, we examined the effect of propofol on cardiomyocytes using myocardial ischemia-reperfusion injury models. The expression level of Nrf2 protein was increased at 15 min after reperfusion in the ischemia-reperfusion and propofol group compared with ischemia-reperfusion group in penumbra region. These results suggest that propofol protects cells or tissues from oxidative stress via Nrf2/HO-1 cascade.


Subject(s)
Cell Nucleus/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Hydrogen Peroxide/adverse effects , Myocytes, Cardiac/drug effects , NF-E2-Related Factor 2/metabolism , Propofol/pharmacology , Animals , Apoptosis/drug effects , Cell Line , Gene Expression Regulation/drug effects , Gene Knockdown Techniques , Heme Oxygenase (Decyclizing)/genetics , Models, Biological , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , NF-E2-Related Factor 2/genetics , Oxidative Stress/drug effects , Protein Transport/drug effects , Rats
8.
Front Neuroanat ; 12: 8, 2018.
Article in English | MEDLINE | ID: mdl-29497365

ABSTRACT

Astrocytes are the most abundant glia cell type in the central nervous system (CNS), and are known to constitute heterogeneous populations that differ in their morphology, gene expression and function. Although glial fibrillary acidic protein (GFAP) is the cardinal cytological marker of CNS astrocytes, GFAP-negative astrocytes can easily be found in the adult CNS. Astrocytes are also allocated to spatially distinct regional domains during development. This regional heterogeneity suggests that they help to coordinate post-natal neural circuit formation and thereby to regulate eventual neuronal activity. Here, during lineage-tracing studies of cells expressing Olig2 using Olig2CreER; Rosa-CAG-LSL-eNpHR3.0-EYFP transgenic mice, we found Olig2-lineage mature astrocytes in the adult forebrain. Long-term administration of tamoxifen resulted in sufficient recombinant induction, and Olig2-lineage cells were found to be preferentially clustered in some adult brain nuclei. We then made distribution map of Olig2-lineage astrocytes in the adult mouse brain, and further compared the map with the distribution of GFAP-positive astrocytes visualized in GFAPCre; Rosa-CAG-LSL-eNpHR3.0-EYFP mice. Brain regions rich in Olig2-lineage astrocytes (e.g., basal forebrain, thalamic nuclei, and deep cerebellar nuclei) tended to lack GFAP-positive astrocytes, and vice versa. Even within a single brain nucleus, Olig2-lineage astrocytes and GFAP astrocytes frequently occupied mutually exclusive territories. These findings strongly suggest that there is a subpopulation of astrocytes (Olig2-lineage astrocytes) in the adult brain, and that it differs from GFAP-positive astrocytes in its distribution pattern and perhaps also in its function. Interestingly, the brain nuclei rich in Olig2-lineage astrocytes strongly expressed GABA-transporter 3 in astrocytes and vesicular GABA transporter in neurons, suggesting that Olig2-lineage astrocytes are involved in inhibitory neuronal transmission.

9.
Neurochem Int ; 108: 332-342, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28522413

ABSTRACT

Microglia are essential in developmental processes and maintenance of neuronal homeostasis. Experimental axotomy of motor neurons results in neurodegeneration, and microglia in motor nuclei become activated and migrate towards injured neurons. However, whether these activated microglia are protective or destructive to neurons remains controversial. In the present study, we transected the hypoglossal nerve in BALB/c mice, causing activating transcription factor 3 (ATF3) and growth associated protein 43 (GAP43) induction, and partial neuronal death. Inhibition of microglial accumulation by minocycline administration impaired microglial accumulation, decreased GAP43 mRNA expression, and reduced motor neuron survival. Expression of ATF3 contributed to nerve regeneration, and increased within 6 h after axotomy, prior to microglial migration. Further, microglial contact with neuronal cell bodies was associated with neuronal ATF3 expression. Colchicine administration blocked lesion-induced ATF3 transcription in axotomized neurons and microglial accumulation. In addition, perineuronal microglia-derived ciliary neurotrophic factor (CNTF) increased, indicating that perineuronal microglia in the hypoglossal nucleus protect axotomized motor neurons by releasing trophic factors. We also observed that microglia secrete CNTF and that neurons have CNTFRα and can respond to it in vitro. CNTF promote neurite elongation and neuronal survival of primary cultured neurons. Microglia make contact through unknown neuronal signals that are possibly regulated by ATF3 in hypoglossal nucleus. Moreover, they play important roles in regenerating motor neurons and are potential new therapeutic targets for motor neuron diseases.


Subject(s)
Activating Transcription Factor 3/metabolism , Hypoglossal Nerve/metabolism , Microglia/metabolism , Neurons/metabolism , Activating Transcription Factor 3/analysis , Animals , Axotomy/methods , Cells, Cultured , Ciliary Neurotrophic Factor/analysis , Ciliary Neurotrophic Factor/metabolism , Female , Hypoglossal Nerve/chemistry , Hypoglossal Nerve/drug effects , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Microglia/chemistry , Microglia/drug effects , Minocycline/pharmacology , Neurons/chemistry , Neurons/drug effects
10.
J Neuroimmunol ; 298: 132-7, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27609286

ABSTRACT

The subfornical organ (SFO) has highly permeable fenestrated vasculature and is a key site for immune-to-brain communications. Recently, we showed the occurrence of continuous angiogenesis in the SFO. In the present study, we found that systemic administration of bacterial lipopolysaccharide (LPS) reduced the vascular permeability and endothelial cell proliferation. In LPS-administered mice, the SFO vasculature showed a significant decrease in the immunoreactivity of plasmalemma vesicle associated protein-1, a marker of endothelial fenestral diaphragms. These data suggest that vasculature undergoes structural change to decrease vascular permeability in response to systemic LPS administration.


Subject(s)
Capillary Permeability/drug effects , Cell Proliferation/drug effects , Endothelial Cells/drug effects , Lipopolysaccharides/toxicity , Subfornical Organ/drug effects , Animals , Bromodeoxyuridine/metabolism , Carrier Proteins/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Subfornical Organ/pathology , Time Factors
11.
Front Cell Neurosci ; 10: 165, 2016.
Article in English | MEDLINE | ID: mdl-27445692

ABSTRACT

Changes in astrocyte morphology are primarily attributed to the fine processes where intimate connections with neurons form the tripartite synapse and participate in neurotransmission. Recent evidence has shown that neurotransmission induces dynamic synaptic remodeling, suggesting that astrocytic fine processes may adapt their morphologies to the activity in their environment. To illustrate such a neuron-glia relationship in morphological detail, we employed a double transgenic Olig2(CreER/WT); ROSA26-GAP43-EGFP mice, in which Olig2-lineage cells can be visualized and traced with membrane-targeted GFP. Although Olig2-lineage cells in the adult brain usually become mature oligodendrocytes or oligodendrocyte precursor cells with NG2-proteoglycan expression, we found a population of Olig2-lineage astrocytes with bushy morphology in several brain regions. The globus pallidus (GP) preferentially contains Olig2-lineage astrocytes. Since the GP exerts pivotal motor functions in the indirect pathway of the basal ganglionic circuit, we subjected the double transgenic mice to voluntary wheel running to activate the GP and examined morphological changes of Olig2-lineage astrocytes at both the light and electron microscopic levels. The double transgenic mice were divided into three groups: control group mice were kept in a cage with a locked running wheel for 3 weeks, Runner group were allowed free access to a running wheel for 3 weeks, and the Runner-Rest group took a sedentary 3-week rest after a 3-week running period. GFP immunofluorescence analysis and immunoelectron microscopy revealed that astrocytic fine processes elaborated complex arborization in the Runner mice, and reverted to simple morphology comparable to that of the Control group in the Runner-Rest group. Our results indicated that the fine processes of the Olig2-lineage astrocytes underwent plastic changes that correlated with overall running activities, suggesting that they actively participate in motor functions.

12.
Neurochem Res ; 41(1-2): 278-89, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26694649

ABSTRACT

Sonic hedgehog (Shh), a member of the Hedgehog (Hh) family, plays essential roles in the development of the central nervous system. Recent studies suggest that the Hh signaling pathway also functions in mature astrocytes under physiological conditions. We first examined the expression of genes encoding Hh signaling molecules in the adult mouse cerebellum by in situ hybridization histochemistry. mRNA for Patched homolog 1 (Ptch1), a receptor for Hh family members, was expressed in S100ß-positive astrocytes and Shh mRNA was expressed in HuC/D-positive neurons, implying that the Hh signaling pathway contributes to neuro-glial interactions. To test this hypothesis, we next examined the effects of recombinant SHH N-terminal protein (rSHH-N) on the functions of cultured cerebellar astrocytes. rSHH-N up-regulated Hh signal target genes such as Ptch1 and Gli-1, a key transcription factor of the Hh signaling pathway. Although activation of Hh signaling by rSHH-N or purmorphamine influenced neither glutamate uptake nor gliotransmitters release, inhibition of the Hh signaling pathway by cyclopamine, neutralizing antibody against SHH or intracellular Ca(2+) chelation decreased glutamate and ATP release from cultured cerebellar astrocytes. On the other hand, cyclopamine, neutralizing antibody against SHH or Ca(2+) chelator hardly affected D-serine secretion. Various kinase inhibitors attenuated glutamate and ATP release, while only U0126 reduced D-serine secretion from the astrocytes. These results suggested that the Hh signaling pathway sustains the release of glutamate and ATP and participates in neuro-glial interactions in the adult mouse brain. We also propose that signaling pathways distinct from the Hh pathway govern D-serine secretion from adult cerebellar astrocytes.


Subject(s)
Astrocytes/metabolism , Hedgehog Proteins/metabolism , Neuroglia/metabolism , Neurotransmitter Agents/metabolism , Signal Transduction , Animals , Cells, Cultured , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...