Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Stress Chaperones ; 28(6): 1001-1012, 2023 11.
Article in English | MEDLINE | ID: mdl-38001371

ABSTRACT

Human Hsp70-escort protein 1 (hHep1) is a cochaperone that assists in the function and stability of mitochondrial HSPA9. Similar to HSPA9, hHep1 is located outside the mitochondria and can interact with liposomes. In this study, we further investigated the structural and thermodynamic behavior of interactions between hHep1 and negatively charged liposomes, as well as interactions with cellular membranes. Our results showed that hHep1 interacts peripherally with liposomes formed by phosphatidylserine and cardiolipin and remains partially structured, exhibiting similar affinities for both. In addition, after being added to the cell membrane, recombinant hHep1 was incorporated by cells in a dose-dependent manner. Interestingly, the association of HSPA9 with hHep1 improved the incorporation of these proteins into the lipid bilayer. These results demonstrated that hHep1 can interact with lipids also present in the plasma membrane, indicating roles for this cochaperone outside of mitochondria.


Subject(s)
Lipid Bilayers , Liposomes , Humans , Cell Membrane/metabolism , Lipid Bilayers/metabolism , Liposomes/metabolism , Mitochondria/metabolism , Molecular Chaperones/metabolism
2.
Int J Mol Sci ; 22(13)2021 Jun 27.
Article in English | MEDLINE | ID: mdl-34199096

ABSTRACT

Integrins participate in the pathogenesis and progression of tumors at many stages during the metastatic cascade. However, current evidence for the role of integrins in breast cancer progression is contradictory and seems to be dependent on tumor stage, differentiation status, and microenvironmental influences. While some studies suggest that loss of α2ß1 enhances cancer metastasis, other studies suggest that this integrin is pro-tumorigenic. However, few studies have looked at α2ß1 in the context of bone metastasis. In this study, we aimed to understand the role of α2ß1 integrin in breast cancer metastasis to bone. To address this, we utilized in vivo models of breast cancer metastasis to bone using MDA-MB-231 cells transfected with an α2 expression plasmid (MDA-OEα2). MDA cells overexpressing the α2 integrin subunit had increased primary tumor growth and dissemination to bone but had no change in tumor establishment and bone destruction. Further in vitro analysis revealed that tumors in the bone have decreased α2ß1 expression and increased osteolytic signaling compared to primary tumors. Taken together, these data suggest an inverse correlation between α2ß1 expression and bone-metastatic potential. Inhibiting α2ß1 expression may be beneficial to limit the expansion of primary tumors but could be harmful once tumors have established in bone.


Subject(s)
Bone Neoplasms/secondary , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Gene Expression , Integrin alpha2beta1/genetics , Animals , Bone Neoplasms/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Disease Models, Animal , Female , Humans , Mice , Neoplasm Invasiveness , Osteolysis/genetics , Osteolysis/metabolism , Phenotype
3.
Photodiagnosis Photodyn Ther ; 19: 355-362, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28716739

ABSTRACT

BACKGROUND: Photodynamic therapy (PDT) has been established in several countries as an alternative therapy for the treatment of various malignancies. This therapy involves the incorporation of a photosensitizer (PS) that is activated by visible light and form reactive oxygen species leading to target cell death by apoptosis or necrosis. Previously, our group has demonstrated that CHL-T (semi-synthesized from chlorophyll a and containing a linked solubilizing group TRISMA®) presented a pronounced potential to induce death in HeLa cell line after PDT. In the present study, besides confirm the high cytotoxicity in another cell line, we have further investigated the cell death mechanisms caused by CHL-T as a photosensitizer in laryngeal carcinoma cells. METHODS: Cells were exposed to different concentrations of three photosensitizers, namely, hypericin (HY), unmodified chlorin (CHL) and a synthesized amphiphilic chlorin derivative (CHL-T). PSs accumulation and localization were accessed by fluorescence assays. Photosensitization was induced at 6Jcm-2 using red LEDs (630±10nm). Viability was assessed by mitochondrial function (MTT); whereas apoptosis/necrosis was evaluated by fluorescence microscopy and flow cytometry. Expression of pro-apoptotic p53 protein was studied by Western blot. RESULTS AND CONCLUSIONS: All PS showed similar localization profile in the HEp-2 cells. The use of CHL-T increased the percentage of apoptotic cells and also p53 expression in comparison with the use of HY and CHL as photosensitizers. This study shows a significant effect of CHLT associated with red light (630±10nm and 18mWcm-2) irradiation on a cancer cell line, indicating the potential of this amphiphilic chlorin in enhancing the therapeutic effectiveness of Photodynamic Therapy (PDT).


Subject(s)
Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Anthracenes , Apoptosis/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Humans , Perylene/analogs & derivatives , Perylene/pharmacology , Photosensitizing Agents/pharmacokinetics , Porphyrins/pharmacology
4.
Photodiagnosis Photodyn Ther ; 17: 39-47, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27769913

ABSTRACT

An amphiphilic chlorin derivative (CHL-T) was prepared from methylpheophorbide a (CHL) and 2-Amino-2-(hydroxymethyl)-1,3-propanediol (TRISMA®). The new chlorin was compared to other dyes (CHL and Hypericin) in relation to photophysical and photobiological activities in tumor and non-tumor cell lines. Cytotoxicity and cell death target were determined to evaluate the CHL-T efficiency, comparing to the precursor CHL and to the well-known dye hypericin (HY). All of the studied compounds exhibited absorption bands in the therapeutic window and presented a small fluorescence quantum yield compared to the reference dye (rhodamine B). CHL-T was about three times more efficient on singlet oxygen generation than the others photosensitizers. The lipophilicity order of the photosensitizers was CHL>HY>CHL-T. The tumoral HeLa cells presented improved accumulation for CHL and CHL-T compared to HY. The phototoxicity presented by the CHL-T was about ten times higher than by CHL, as demonstrated by the MTT assay. CHL-T showed more cytotoxicity to tumoral cell, comparing to non-tumoral cell in short incubation time. The cell death rises proportionally with increasing PSs concentrations, mainly by necrosis. These findings suggest that CHL-T is a potential new photosensitizer for PDT.


Subject(s)
Chlorophyll/analogs & derivatives , Chlorophyll/pharmacology , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Anthracenes , Cell Death/drug effects , Chlorophyll/chemistry , HeLa Cells , Humans , Microscopy, Fluorescence , Perylene/analogs & derivatives , Perylene/pharmacology , Photosensitizing Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...