Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 12(1): e0169702, 2017.
Article in English | MEDLINE | ID: mdl-28056105

ABSTRACT

OBJECTIVE: Rheumatoid arthritis (RA) is an autoimmune inflammatory disease affecting joints. Elevated plasma levels of microRNA-223-3p (miR-223-3p) in patients with RA are implicated in the pathogenesis of the disease. This study aimed to analyze the functional role of miR-223-3p in the pathogenesis of RA by overexpressing miR-223-3p in synovial cell lines. METHODS: Arthritis was induced in the RA model of SKG mice by injection of ß-glucan. The histopathologic features of joints were examined using hematoxylin and eosin and immunohistochemical staining. Plasma levels of miRNA were determined by panel real-time PCR analysis. Target genes of the differentially expressed miRNAs in SKG mice were analyzed using miRNA target prediction algorithms. The dual-luciferase reporter system was used to evaluate the relationship between miR-223-3p and IL-17 receptor D (IL-17RD). The activity of miR-223-3p was analyzed by transfection of plasmid vectors overexpressing miR-223-3p into IL-17RD-expressing NIH3T3 and MH7A cell lines. Il6 and Il17rd mRNA expression was analyzed by quantitative real-time PCR. IL-17RD protein expression was analyzed by western blot analysis. RESULTS: We identified 17 upregulated miRNAs (fold change > 2.0) in plasma of SKG mice injected with ß-glucan relative to untreated SKG mice. Il17rd was identified as the candidate target gene of miR-223-3p using five miRNA target prediction algorithms. The transfection of plasmid vectors overexpressing miR-223-3p into NIH3T3 and MH7A cells resulted in the downregulation of Il17rd expression and upregulation of Il6 expression. Expression of miR-223-3p and Il6 mRNA in MH7A cells was upregulated; however, that of Il17rd mRNA was downregulated following TNF-α stimulation. IL-17RD expression in synovial tissues from SKG mice and RA patients was inversely correlated with the severity of arthritis. CONCLUSION: This study is the first to demonstrate that miR-223-3p downregulates IL-17RD in both mouse and human cells; miR-223-3p may contribute to the pathogenesis of RA by downregulating the expression of IL-17RD and upregulating that of IL-6 in synovial cells.


Subject(s)
MicroRNAs/metabolism , Receptors, Interleukin-17/metabolism , Synovial Membrane/cytology , Animals , Arthritis, Rheumatoid/metabolism , Blotting, Western , Female , Humans , Interleukin-6/metabolism , Mice , MicroRNAs/genetics , NIH 3T3 Cells , Real-Time Polymerase Chain Reaction , Receptors, Interleukin-17/genetics , Synovial Membrane/drug effects , Synovial Membrane/metabolism , Tumor Necrosis Factor-alpha/pharmacology , beta-Glucans/pharmacology
2.
Biol Pharm Bull ; 39(8): 1381-6, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-27237601

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs that are involved in mRNA post-transcriptional regulation. The deregulation of miRNAs affects the expression of drug-metabolizing enzymes, drug transporters, and nuclear receptors, all of which are important in regulating drug metabolism. miRNA expression can be altered by several endogenous or exogenous agents, such as steroid hormones, carcinogens, and therapeutic drugs. However, it is unclear whether hepatic miRNA expression is regulated by nuclear receptors, such as pregnane X receptor (PXR) and constitutive androstane receptor (CAR), which are indispensable for the expression of the CYPs. Here we investigated the effects of the mouse PXR and CAR ligands pregnenolone-16α-carbonitrile (PCN) and 1,4-bis[(3,5-dichloropyridin-2-yl)oxy]benzene (TCPOBOP) on hepatic miRNA expression in mice. We found that the expression of 9 miRNAs was increased (>2-fold) and of 4 miRNAs was decreased (>50%) in response to PCN, while TCPOBOP treatment led to the up-regulation of 8 miRNAs and down-regulation of 6 miRNAs. Using several miRNA target prediction algorithms, we found that the predicted target genes included several lesser known Cyp genes (Cyp1a1, Cyp1b1, Cyp2b10, Cyp2c38, Cyp2u1, Cyp4a12a/b, Cyp4v3, Cyp17a1, Cyp39a1, and Cyp51). We analyzed the expression of these genes in response to PCN and TCPOBOP and found changes in their mRNA levels, some of which were negatively correlated with the expression of their corresponding miRNAs, suggesting that miRNAs may play a role in regulating Cyp enzyme expression. Further studies will be required to fully elucidate the miRNA regulatory mechanisms that contribute to modulating CYP expression.


Subject(s)
Cytochrome P-450 Enzyme System/genetics , Gene Expression Regulation, Enzymologic/drug effects , Liver/drug effects , MicroRNAs/metabolism , Pregnenolone Carbonitrile/pharmacology , Pyridines/pharmacology , Animals , Liver/metabolism , Male , Mice, Inbred BALB C , RNA, Messenger/metabolism
3.
PLoS One ; 11(2): e0149737, 2016.
Article in English | MEDLINE | ID: mdl-26919122

ABSTRACT

Diesel exhaust particles are a major component of ambient particulate matter, and concern about the health effects of exposure to ambient particulate matter is growing. Previously, we found that in utero exposure to diesel exhaust affected locomotor activity and motor coordination, but there are also indications that such exposure may contribute to increased aggression in offspring. Therefore, the aim of the present study was to test the effects of prenatal diesel exhaust exposure on social isolation-induced territorial aggression. Pregnant mice were exposed to low concentrations of diesel exhaust (DE; mass concentration of 90 µg/m3: DE group: n = 15) or clean air (control group: n = 15) for 8 h/day during gestation. Basal locomotion of male offspring was measured at 10 weeks of age. Thereafter, male offspring were individually housed for 2 weeks and subsequently assessed for aggression using the resident-intruder test at 12 weeks of age, and blood and brain tissue were collected from the male offspring on the following day for measuring serum testosterone levels and neurochemical analysis. There were no significant differences in locomotion between control and DE-exposed mice. However, DE-exposed mice showed significantly greater social isolation-induced territorial aggressive behavior than control mice. Additionally, socially-isolated DE-exposed mice expressed significantly higher concentrations of serum testosterone levels than control mice. Neurochemical analysis revealed that dopamine levels in the prefrontal cortex and nucleus accumbens were higher in socially isolated DE-exposed mice. Serotonin levels in the nucleus accumbens, amygdala, and hypothalamus were also lower in the socially isolated DE-exposed mice than in control mice. Thus, even at low doses, prenatal exposure to DE increased aggression and serum testosterone levels, and caused neurochemical changes in male socially isolated mice. These results may have serious implications for pregnant women living in regions with high levels of traffic-related air pollution.


Subject(s)
Aggression , Prenatal Exposure Delayed Effects/etiology , Social Isolation , Vehicle Emissions , Animals , Body Weight , Dopamine/metabolism , Female , Male , Mice, Inbred ICR , Motor Activity , Pregnancy , Prenatal Exposure Delayed Effects/blood , Serotonin/metabolism , Testosterone/blood
4.
J Toxicol Sci ; 38(1): 13-23, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23358136

ABSTRACT

Exposure to ambient particulate matter (PM) has been associated with the onset of cardiovascular and respiratory diseases. Diesel exhaust particles (DEP) are major components of ambient PM. We first reported DEP in the central nervous system of offspring utilizing maternal inhalation to diesel exhaust (DE). In addition, we found that the effects of maternal exposure to DE reduced spontaneous motor activity. However, it is still unknown whether maternal exposure to DE affects higher order behavioral function. Therefore, the aim of the present study was to examine the effects of fetal exposure to DE on motor coordination, impulsive behavior and monoaminergic systems in various brain regions. The results of the rotating rod test showed that DE-exposed mice displayed decreased time on the rota rod compared to control mice. However, no changes were detected between the two groups in the hanging test. Furthermore, the cliff avoidance test revealed that DE-exposed mice spent more time in the corner and fell off an inverted glass beaker compared to control mice. High performance liquid chromatography analysis revealed that noradrenaline turnover in the cerebellum was decreased by prenatal exposure to DE, and was significantly increased in the hypothalamus. Dopamine and serotonin levels in various brain regions were also changed by prenatal exposure to DE. Our study found that prenatal exposure to DE alters motor coordination, impulsive behavior and related monoamine levels. Therefore, the present study underscores the role of behavioral changes related to monoamine in response to maternal inhalation of DE.


Subject(s)
Air Pollutants/toxicity , Prenatal Exposure Delayed Effects , Vehicle Emissions/toxicity , Animals , Behavior, Animal/drug effects , Brain/drug effects , Brain/metabolism , Dopamine/metabolism , Female , Impulsive Behavior/chemically induced , Male , Maternal-Fetal Exchange , Mice , Mice, Inbred ICR , Neurotransmitter Agents/metabolism , Norepinephrine/metabolism , Pregnancy , Psychomotor Performance/drug effects , Serotonin/metabolism
5.
Biol Pharm Bull ; 35(4): 473-80, 2012.
Article in English | MEDLINE | ID: mdl-22466549

ABSTRACT

Infection-associated inflammation can alter the expression levels and functions of cytochrome P450s (CYPs). Cyp gene expression is regulated by the activation of several nuclear receptors, including pregnane X receptor (PXR), constitutive androstane receptor (CAR), and aryl hydrocarbon receptor (AhR). These receptors can be activated by xenobiotics, including medicines. Here, to study the xenobiotic-induced fluctuations in CYP during inflammation, we examined the effect of lipopolysaccharide (LPS) treatment on the level of mRNAs encoding hepatic CYPs induced by xenobiotic-activated nuclear receptors, in mice. Both the mRNA induction of Cyp genes and the metabolic activities of CYP proteins were examined. LPS treatment caused a significant decrease in the induced expression of the mRNAs for Cyp3a11, 2c29, 2c55, and 1a2, but not for Cyp2b10. To assess the CYP enzymatic activities, CYP3A-mediated testosterone 6ß-hydroxylation and the intrinsic clearance (CL(int)) of nifedipine in liver microsomes were measured in mice treated with the xenobiotic pregnenolone-16alpha-carbonitrile (PCN) with or without LPS administration. Both assays revealed that the CYP3A activity, which was induced by PCN, declined significantly after LPS treatment, and this decline correlated with the Cyp3a11 mRNA level. In addition, we found that the mRNAs for interleukin (IL)-1ß and tumor necrosis factor (TNF) α were increased after treatment with LPS plus xenobiotics. Our findings demonstrated that LPS treatment reduces the PXR- and AhR-mediated, and possibly CAR-mediated Cyp gene expression and further suggest that these decreases are dependent on inflammatory cytokines in the liver.


Subject(s)
Cytochrome P-450 Enzyme System/genetics , Gene Expression Regulation, Enzymologic/drug effects , Lipopolysaccharides/pharmacology , Xenobiotics/pharmacology , Animals , Benzo(a)pyrene/pharmacology , Constitutive Androstane Receptor , Inflammation/chemically induced , Inflammation/metabolism , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred BALB C , Pregnane X Receptor , Pregnenolone Carbonitrile/pharmacology , Pyridines/pharmacology , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Receptors, Aryl Hydrocarbon/agonists , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Steroid/agonists
6.
Neurosci Lett ; 449(1): 38-41, 2009 Jan 02.
Article in English | MEDLINE | ID: mdl-18938223

ABSTRACT

Diesel exhaust (DE) is composed of particles and gaseous compounds. It has been reported that DE causes pulmonary and cardiovascular disease. We have previously reported that fetal exposure to DE had deleterious effects to the reproductive system of mice offspring. However, there is still little known about the effects of prenatal exposure to DE to the central nervous system (CNS). In the present study, we found that prenatal exposure to DE induced reduction of locomotion, furthermore, dopamine (DA) turnover was significantly decreased in the striatum and nucleus accumbens. These results suggest that prenatal exposure to DE has an effect on the CNS. Hypolocomotion could be due to a decrease in DA turnover associated with DA nervous system abnormality. The present study provides the possibility that maternally inhaled DE might influence the development of central dopaminergic system and result in behavior disorder.


Subject(s)
Dopamine/metabolism , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolism , Vehicle Emissions , 3,4-Dihydroxyphenylacetic Acid/metabolism , Animals , Brain/metabolism , Circadian Rhythm/physiology , Female , Homovanillic Acid/metabolism , Male , Mice , Mice, Inbred ICR , Motor Activity/physiology , Pregnancy , Prenatal Exposure Delayed Effects/pathology , Prenatal Exposure Delayed Effects/physiopathology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...