Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oncol Rep ; 34(1): 431-8, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25954945

ABSTRACT

The effects of delphinidin were investigated by focusing on growth inhibition, cell cycle arrest and apoptosis induction in the human acute promyelocytic leukemia (APL) NB4 cell line. Delphinidin exhibited a dose- and time-dependent cytotoxic effect against NB4 cells. Almost no cell cycle arrest, but an apparent increase in the percentage of sub-G1 cells was observed in delphinidin-treated cells. The activation of caspase-8 and -9 was observed as early as 1-h post-exposure to delphinidin, followed by the activation of caspase-3 from 3-h post-exposure. A substantial decrease in the expression level of Bid was also observed as early as 1-h post-exposure. A modest decrease in the mitochondrial membrane potential (ΔΨm) was observed at 3-h post-exposure, followed by a substantial time-dependent decrease in ΔΨm in treated cells. Delphinidin exerted more potent cytotoxicity against NB4 cells than normal peripheral blood mononuclear cells (PBMNCs). In addition, delphinidin in combination with an arsenic derivative arsenite (As(III)), which has demonstrated marked efficacy in patients with APL, achieved an enhanced cytocidal effect against NB4 cells, but lesser on PBMNCs. Treatment of NB4 cells with As(III) plus delphinidin did not increase, but decreased slightly, intracellular arsenic accumulation (As[i]) as compared to that treated with As(III) alone. These results suggested that delphinidin selectively sensitized NB4 cells to As(III), resulting in the enhancement of As(III) cytotoxicity by strengthening intrinsic/extrinsic pathway-mediated apoptosis induction, rather than affecting the As[i] levels. These observations may offer a rationale for the use of delphinidin to improve the clinical efficacy of As(III).


Subject(s)
Anthocyanins/pharmacology , Antineoplastic Agents/pharmacology , Arsenites/pharmacology , Leukemia, Promyelocytic, Acute/drug therapy , Apoptosis , Caspase 8/metabolism , Caspase 9/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Membrane Potential, Mitochondrial/drug effects
2.
Pharm Res ; 32(7): 2192-204, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25701312

ABSTRACT

PURPOSE: To investigate the role of organic cation transporters (Octs) and multidrug and toxin extrusion protein 1 (Mate1) in the disposition of thiamine. METHODS: The uptake of [(3)H]thiamine was determined in Oct1-, Oct2-, and Oct3-expressing HEK293 cells and freshly isolated hepatocytes. A pharmacokinetic study of thiamine-d3 following intravenous infusion (1 and 100 nmol/min/kg) was conducted in male Oct1/2(+/+) and Oct1/2(-/-) mice. A MATE inhibitor, pyrimethamine, (5 mg/kg) was administered intravenously. The plasma and breast milk concentrations of thiamine were determined in female mice. RESULTS: Thiamine is a substrate of Oct1 and Oct2, but not Oct3. Oct1/2 defect caused a significant reduction in the uptake of [(3)H]thiamine by hepatocytes in vitro, and elevated the plasma thiamine concentration by 5.8-fold in vivo. The plasma clearance of thiamine-d3 was significantly decreased in Oct1/2(-/-) mice. At the higher infusion rate of 100 nmol/min/kg thiamine-d3, Oct1/2 defect or pyrimethamine-treatment caused a significant reduction in the renal clearance of thiamine-d3. The total thiamine and thiamine-d3 concentrations were moderately reduced in the intestine of Oct1/2(-/-) mice but were unchanged in the kidney, liver, or brain. The milk-to-plasma concentration ratio of thiamine was decreased by 28-fold in the Oct1/2(-/-) mice. CONCLUSIONS: Oct1 is possibly responsible for the plasma clearance of thiamine via tissue uptake and for milk secretion. Oct1/2 and Mate1 are involved in the renal tubular secretion of thiamine.


Subject(s)
Catecholamine Plasma Membrane Transport Proteins/metabolism , Hepatocytes/metabolism , Milk/metabolism , Organic Cation Transport Proteins/metabolism , Thiamine/pharmacokinetics , Animals , Biological Transport , Catecholamine Plasma Membrane Transport Proteins/genetics , Chromatography, Liquid , HEK293 Cells , Humans , Lactation , Male , Metabolic Clearance Rate , Mice, Knockout , Organic Cation Transport Proteins/genetics , Tandem Mass Spectrometry , Thiamine/blood , Thiamine/metabolism , Tissue Distribution , Transfection
3.
J Clin Biochem Nutr ; 46(3): 234-43, 2010 May.
Article in English | MEDLINE | ID: mdl-20490319

ABSTRACT

Polaprezinc (PZ), a chelate compound consisting of zinc and l-carnosine (Car), is an anti-ulcer drug developed in Japan. In the present study, we investigated whether PZ suppresses mortality, pulmonary inflammation, and plasma nitric oxide (NO) and tumor necrosis factor (TNF)-alpha levels in endotoxin shock mice after peritoneal injection of lipopolysaccharide (LPS), and how PZ protects against LPS-induced endotoxin shock. PZ pretreatment inhibited the decrease in the survival rate of mice after LPS injection. PZ inhibited the increases in plasma NO as well as TNF-alpha after LPS. Compatibly, PZ suppressed LPS-induced inducible NO synthase mRNA transcription in the mouse lungs. PZ also improved LPS-induced lung injury. However, PZ did not enhance the induction of heat shock protein (HSP) 70 in the mouse lungs after LPS. Pretreatment of RAW264 cells with PZ suppressed the production of NO and TNF-alpha after LPS addition. This inhibition likely resulted from the inhibitory effect of PZ on LPS-mediated nuclear factor-kappaB (NF-kappaB) activation. Zinc sulfate, but not Car, suppressed NO production after LPS. These results indicate that PZ, in particular its zinc subcomponent, inhibits LPS-induced endotoxin shock via the inhibition of NF-kappaB activation and subsequent induction of proinflammatory products such as NO and TNF-alpha, but not HSP induction.

SELECTION OF CITATIONS
SEARCH DETAIL
...