Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (140)2018 10 23.
Article in English | MEDLINE | ID: mdl-30417860

ABSTRACT

Heterostructure field effect transistors (HFETs) utilizing a two dimensional electron gas (2DEG) channel have a great potential for high speed device applications. Zinc oxide (ZnO), a semiconductor with a wide bandgap (3.4 eV) and high electron saturation velocity has gained a great deal of attention as an attractive material for high speed devices. Efficient gate modulation, however, requires high-quality Schottky contacts on the barrier layer. In this article, we present our Schottky diode fabrication procedure on Zn-polar BeMgZnO/ZnO heterostructure with high density 2DEG which is achieved through strain modulation and incorporation of a few percent Be into the MgZnO-based barrier during growth by molecular beam epitaxy (MBE). To achieve high crystalline quality, nearly lattice-matched high-resistivity GaN templates grown by metal-organic chemical vapor deposition (MOCVD) are used as the substrate for the subsequent MBE growth of the oxide layers. To obtain the requisite Zn-polarity, careful surface treatment of GaN templates and control over the VI/II ratio during the growth of low temperature ZnO nucleation layer are utilized. Ti/Au electrodes serve as Ohmic contacts, and Ag electrodes deposited on the O2 plasma pretreated BeMgZnO surface are used for Schottky contacts.


Subject(s)
Electrons/therapeutic use , Lasers, Semiconductor/therapeutic use , Zinc Oxide/chemistry , Electricity , Microscopy, Atomic Force , Surface Properties
2.
ACS Appl Mater Interfaces ; 10(43): 37651-37660, 2018 Oct 31.
Article in English | MEDLINE | ID: mdl-30280560

ABSTRACT

In semiconductor heterojunction, polarity critically governs the physical properties, with an impact on electronic or optoelectronic devices through the presence of pyroelectric and piezoelectric fields at the active heteropolar interface. In the present work, the abrupt O-polar ZnO/Ga-polar GaN heterointerface was successfully achieved by using high O/Zn ratio flux during the ZnO nucleation growth. Atomic-resolution high-angle annular dark-field and bright-field transmission electron microscopy observation revealed that this polarity inversion confines within one monolayer by forming the (0001) plane inversion domain boundary (IDB) at the ZnO/GaN heterointerface. Through theoretical calculation and topology analysis, the geometry of this IDB was determined to possess an octahedral Ga atomic layer in the interface, with one O/N layer symmetrically bonded at the tetrahedral site. The computed electronic structure of all considered IDBs revealed a metallic character at the heterointerface. More interestingly, the presence of two-dimensional (2D) hole gas (2DHG) or 2D electron gas (2DEG) is uncovered by investigating the chemical bonding and charge transfer at the heterointerface. This work not only clarifies the polarity control and interfacial configuration of the O-polar ZnO/Ga-polar GaN heterojunction but, more importantly, also gives insight into their further application on heterojunction field-effect transistors as well as hybrid ZnO/GaN optoelectronic devices. Moreover, such polarity control at the monolayer scale might have practical implications for heterojunction devices based on other polar semiconductors.

3.
Toxicol Res (Camb) ; 7(5): 754-759, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30210779

ABSTRACT

This study evaluated the cytocompatibility of single- and poly-crystalline ZnO thin films using extract and direct contact methods. Exposure to poly-crystalline ZnO extract resulted in reduced cell viability, on average 82%/70% as measured by MTS/LDH assays, respectively. Direct exposure to both single- and poly-crystalline ZnO thin films resulted in reduced cell viability, which was attributed to anoikis due to inhibition of cell adhesion to the substrate by zinc. Intracellular zinc imaging suggests that single crystalline ZnO thin films do not result in a significant change in intracellular zinc concentrations. Overall, the results suggest that single-crystalline ZnO thin films have better short-term (24 h) cytocompatibility and support their potential to serve as a biocompatible sensor material.

4.
Microsc Microanal ; 20(3): 864-8, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24667066

ABSTRACT

Aberration-corrected scanning transmission electron microscopy images of the In(0.15)Ga(0.85)N active region of a blue light-emitting diode, acquired at ~0.1% of the electron dose known to cause electron beam damage, show no lateral compositional fluctuations, but do exhibit one to four atomic plane steps in the active layer's upper boundary. The area imaged was measured to be 2.9 nm thick using position averaged convergent beam electron diffraction, ensuring the sample was thin enough to capture compositional variation if it was present. A focused ion beam prepared sample with a very large thin area provides the possibility to directly observe large fluctuations in the active layer thickness that constrict the active layer at an average lateral length scale of 430 nm.

5.
Opt Lett ; 30(1): 93-5, 2005 Jan 01.
Article in English | MEDLINE | ID: mdl-15648649

ABSTRACT

We have demonstrated the decay of spontaneous emission (SE) from AlN-GaN quantum dots (QDs) into silver surface plasmon (SP) modes in the ultraviolet at approximately 375-380 nm. Using time-resolved photoluminescence (PL), we show that the electron-hole recombination rate in AlN-GaN QDs is enhanced when SE is resonantly coupled to a metal SP mode, corresponding to the dip in the continuous-wave PL spectrum. Exciton recombination by means of silver SP modes is as much as 3-7 times faster than in normal QD SE and depends strongly on emission wavelength and thickness of the silver.

SELECTION OF CITATIONS
SEARCH DETAIL
...