Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 80(13): 2874-2888, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32265223

ABSTRACT

Myeloid-derived suppressor cells (MDSC) include immature monocytic (M-MDSC) and granulocytic (PMN-MDSC) cells that share the ability to suppress adaptive immunity and to hinder the effectiveness of anticancer treatments. Of note, in response to IFNγ, M-MDSCs release the tumor-promoting and immunosuppressive molecule nitric oxide (NO), whereas macrophages largely express antitumor properties. Investigating these opposing activities, we found that tumor-derived prostaglandin E2 (PGE2) induces nuclear accumulation of p50 NF-κB in M-MDSCs, diverting their response to IFNγ toward NO-mediated immunosuppression and reducing TNFα expression. At the genome level, p50 NF-κB promoted binding of STAT1 to regulatory regions of selected IFNγ-dependent genes, including inducible nitric oxide synthase (Nos2). In agreement, ablation of p50 as well as pharmacologic inhibition of either the PGE2 receptor EP2 or NO production reprogrammed M-MDSCs toward a NOS2low/TNFαhigh phenotype, restoring the in vivo antitumor activity of IFNγ. Our results indicate that inhibition of the PGE2/p50/NO axis prevents MDSC-suppressive functions and restores the efficacy of anticancer immunotherapy. SIGNIFICANCE: Tumor-derived PGE2-mediated induction of nuclear p50 NF-κB epigenetically reprograms the response of monocytic cells to IFNγ toward an immunosuppressive phenotype, thus retrieving the anticancer properties of IFNγ. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/13/2874/F1.large.jpg.


Subject(s)
Cell Differentiation , Colorectal Neoplasms/pathology , Dinoprostone/pharmacology , Monocytes/pathology , Myeloid-Derived Suppressor Cells/pathology , NF-kappa B p50 Subunit/metabolism , Pancreatic Neoplasms/pathology , Animals , Apoptosis , Cell Proliferation , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/immunology , Colorectal Neoplasms/metabolism , Humans , Immune Tolerance , Interferon-gamma/metabolism , Melanoma, Experimental/drug therapy , Melanoma, Experimental/immunology , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice , Monocytes/drug effects , Monocytes/immunology , Monocytes/metabolism , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , NF-kappa B p50 Subunit/genetics , Nitric Oxide/metabolism , Oxytocics/pharmacology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Tumor Cells, Cultured
2.
Cancer Res ; 79(8): 1938-1951, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30777853

ABSTRACT

Cancer induces alteration of hematopoiesis to fuel disease progression. We report that in tumor-bearing mice the macrophage colony-stimulating factor elevates the myeloid cell levels of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD salvage pathway, which acts as negative regulator of the CXCR4 retention axis of hematopoietic cells in the bone marrow. NAMPT inhibits CXCR4 through a NAD/Sirtuin 1-mediated inactivation of HIF1α-driven CXCR4 gene transcription, leading to mobilization of immature myeloid-derived suppressor cells (MDSC) and enhancing their production of suppressive nitric oxide. Pharmacologic inhibition or myeloid-specific ablation of NAMPT prevented MDSC mobilization, reactivated specific antitumor immunity, and enhanced the antitumor activity of immune checkpoint inhibitors. Our findings identify NAMPT as a metabolic gate of MDSC precursor function, providing new opportunities to reverse tumor immunosuppression and to restore clinical efficacy of immunotherapy in patients with cancer. SIGNIFICANCE: These findings identify NAMPT as a metabolic gate of MDSC precursor function, providing new opportunities to reverse tumor immunosuppression and to restore clinical efficacy of immunotherapy in cancer patients.


Subject(s)
Colorectal Neoplasms/pathology , Mammary Neoplasms, Experimental/pathology , Myeloid-Derived Suppressor Cells/pathology , NAD/metabolism , Nicotinamide Phosphoribosyltransferase/metabolism , Sarcoma, Experimental/pathology , Animals , Apoptosis , Cell Proliferation , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Female , Hematopoiesis , Humans , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Myeloid-Derived Suppressor Cells/metabolism , Nicotinamide Phosphoribosyltransferase/genetics , Sarcoma, Experimental/genetics , Sarcoma, Experimental/metabolism , Signal Transduction , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
3.
Cancer Cell ; 28(2): 253-69, 2015 Aug 10.
Article in English | MEDLINE | ID: mdl-26267538

ABSTRACT

Cancer-driven granulo-monocytopoiesis stimulates expansion of tumor promoting myeloid populations, mostly myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs). We identified subsets of MDSCs and TAMs based on the expression of retinoic-acid-related orphan receptor (RORC1/RORγ) in human and mouse tumor bearers. RORC1 orchestrates myelopoiesis by suppressing negative (Socs3 and Bcl3) and promoting positive (C/EBPß) regulators of granulopoiesis, as well as the key transcriptional mediators of myeloid progenitor commitment and differentiation to the monocytic/macrophage lineage (IRF8 and PU.1). RORC1 supported tumor-promoting innate immunity by protecting MDSCs from apoptosis, mediating TAM differentiation and M2 polarization, and limiting tumor infiltration by mature neutrophils. Accordingly, ablation of RORC1 in the hematopoietic compartment prevented cancer-driven myelopoiesis, resulting in inhibition of tumor growth and metastasis.


Subject(s)
Granulocytes/metabolism , Monocytes/metabolism , Myelopoiesis/genetics , Neoplasms, Experimental/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Animals , Apoptosis/genetics , Cell Differentiation/genetics , Cell Line, Tumor , Cytokines/genetics , Cytokines/metabolism , Female , Gene Expression Regulation, Neoplastic , Granulocytes/pathology , Humans , Immunohistochemistry , Macrophages/metabolism , Macrophages/pathology , Male , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , Monocytes/pathology , Myeloid Cells/metabolism , Myeloid Cells/pathology , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Neutrophils/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tumor Burden/genetics
4.
Int Immunol ; 25(2): 67-75, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23179187

ABSTRACT

Oxygen availability affects cell differentiation, survival and function, with profound consequences on tissue homeostasis, inflammation and immunity. A gradient of oxygen levels is present in most organs of the body as well as in virtually every site of inflammation, damaged or pathological tissue. As a consequence, infiltrating leukocytes, macrophages in particular, are equipped with the capacity to shift their metabolism to anaerobic glycolysis, to generate ATP and induce the expression of factors that increase the supply of oxygen and nutrients. Strikingly, low oxygen conditions (hypoxia) and inflammatory signals share selected transcriptional events, including the activation of members of both the hypoxia-inducible factor and nuclear factor κB families, which may converge to activate specific cell programs. In the pathological response to hypoxia, cancer in particular, macrophages act as orchestrators of disease evolution and their number can be used as a prognostic marker. Here we review mechanisms of macrophage adaptation to hypoxia, their role in disease as well as new perspectives for their therapeutic targeting.


Subject(s)
Hypoxia/metabolism , Macrophages/metabolism , Humans , Hypoxia/physiopathology
5.
Cancer Microenviron ; 5(2): 133-49, 2012 Aug.
Article in English | MEDLINE | ID: mdl-21948460

ABSTRACT

The construction of an inflammatory microenvironment provides the fuel for cancer development and progression. Hence, solid tumors promote the expansion and the recruitment of leukocyte populations, among which tumor-associated myeloid cells (TAMCs) represent a paradigm for cancer-promoting inflammation. TAMCs group heterogeneous phagocytic populations stemming from a common myeloid progenitor (CMP), that orchestrate various aspects of cancer, including: diversion and skewing of adaptive responses; immunosuppression; cell growth; angiogenesis; matrix deposition and remodelling; construction of a metastatic niche and actual metastasis. Several evidence indicate that TAMCs show plasticity and/or functional heterogeneity, suggesting that tumour-derived factors promote their functional "reprogramming" towards protumoral activities. While recent studies have attempted to address the role of microenvironment signals, the interplay between cancer cells, innate and adaptive immunity is now emerging as a crucial step of the TAMCs reprogramming. Here we discuss the evidence for the differentiation of TAMCs during the course of tumor progression and the molecular mechanisms that regulate such event.

6.
Blood ; 118(4): 984-91, 2011 Jul 28.
Article in English | MEDLINE | ID: mdl-21652680

ABSTRACT

Multiple mechanisms operate to ensure T-cell tolerance toward self-antigens. Three main processes have been described: clonal deletion, anergy, and deviation to CD4(+) regulatory T cells (Tregs) that suppress autoreactive T cells that have escaped the first 2 mechanisms. Although it is accepted that dendritic cells (DCs) and B cells contribute in maintaining T-cell tolerance to self-antigens, their relative contribution and the processes involved under physiologic conditions remain only partially characterized. In this study, we used different transgenic mouse models to obtain chimeras where a neo self-antigen is expressed by thymic epithelium and/or by DCs or B cells. We found that expression of cognate ligand in the thymus enhances antigen-specific FoxP3(+) cells independently of whether the self-antigen is expressed on thymic epithelium or only on DCs, but not on B cells. On the contrary, self-antigen expression by B cells was very efficient in inducing FoxP3(+) cells in the periphery, whereas self-antigen expression by DC led mainly to deletion and anergy of antigen-specific FoxP3(-) cells. The results presented in this study underline the role of B cells in Treg induction and may have important implications in clinical protocols aimed at the peripheral expansion of Tregs in patients.


Subject(s)
Antigen Presentation/immunology , Autoantigens/immunology , B-Lymphocytes/immunology , Immune Tolerance/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Clonal Anergy , Clonal Deletion/immunology , Dendritic Cells/immunology , Immunohistochemistry , Mice , Mice, Inbred BALB C , Mice, Transgenic
7.
J Immunol ; 186(12): 6807-14, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21572026

ABSTRACT

The clinical manipulation of regulatory T cells (Tregs) represents a promising strategy for the regulation of unwanted immune responses. It is now becoming clear that Tregs exert multiple effects on different cell targets under particular conditions; however, the interplay between these different factors remains unclear. Using mouse Tregs of known Ag specificity, we report in this study two different levels of Treg-mediated suppression: one that targets T cell proliferation and one that targets dendritic cell-mediated proinflammatory chemokine (CCL3 and CCL4) production. These two effects can be dissociated, and whereas modulation of T cell proliferation depends on the strength of the antigenic stimulus, modulation of chemokine production by dendritic cells does not. We also provide evidence that the bystander effect of Tregs on immune responses observed in vivo may be in great part explained by a decrease in the recruitment of target T cells, and therefore in the magnitude of the response, rather than by a direct effect on their priming or proliferation. Overall, our results shed some light on the different aspects that need to be considered when attempting to modulate Tregs for clinical purposes.


Subject(s)
Cell Proliferation , Chemokines/metabolism , Dendritic Cells/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes/cytology , Animals , Bystander Effect/immunology , Chemokine CCL3/metabolism , Chemokine CCL4/metabolism , Immunity , Mice
8.
J Biol Chem ; 285(51): 40240-51, 2010 Dec 17.
Article in English | MEDLINE | ID: mdl-20956541

ABSTRACT

Acid sphingomyelinase (A-SMase) is an important enzyme in sphingolipid metabolism and plays key roles in apoptosis, immunity, development, and cancer. In addition, it mediates cytotoxicity of cisplatin and some other chemotherapeutic drugs. The mechanism of A-SMase activation is still undefined. We now demonstrate that, upon CD95 stimulation, A-SMase is activated through translocation from intracellular compartments to the plasma membrane in an exocytic pathway requiring the t-SNARE protein syntaxin 4. Indeed, down-regulation of syntaxin 4 inhibits A-SMase translocation and activation induced by CD95 stimulation. This leads to inhibition of the CD95-triggered signaling events, including caspase 3 and 9 activation and apoptosis, activation of the survival pathway involving the protein kinase Akt, and important changes in cell cycle and proliferation. The molecular interaction between A-SMase and syntaxin 4 was not known and clarifies the mechanism of A-SMase activation. The novel actions of syntaxin 4 in sphingolipid metabolism and exocytosis we describe here define signaling mechanisms of broad relevance in cell pathophysiology.


Subject(s)
Apoptosis/physiology , Cell Membrane/enzymology , Exocytosis/physiology , Qa-SNARE Proteins/metabolism , Sphingomyelin Phosphodiesterase/metabolism , fas Receptor/metabolism , Caspase 3/metabolism , Caspase 9/metabolism , Enzyme Activation/physiology , Humans , Protein Transport/physiology , Proto-Oncogene Proteins c-akt/metabolism , Sphingomyelins/metabolism , U937 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...