Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Am J Psychiatry ; : appiajp20230247, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38745458

ABSTRACT

OBJECTIVE: Treatment-resistant depression (TRD) occurs in roughly one-third of all individuals with major depressive disorder (MDD). Although research has suggested a significant common variant genetic component of liability to TRD, with heritability estimated at 8% when compared with non-treatment-resistant MDD, no replicated genetic loci have been identified, and the genetic architecture of TRD remains unclear. A key barrier to this work has been the paucity of adequately powered cohorts for investigation, largely because of the challenge in prospectively investigating this phenotype. The objective of this study was to perform a well-powered genetic study of TRD. METHODS: Using receipt of electroconvulsive therapy (ECT) as a surrogate for TRD, the authors applied standard machine learning methods to electronic health record data to derive predicted probabilities of receiving ECT. These probabilities were then applied as a quantitative trait in a genome-wide association study of 154,433 genotyped patients across four large biobanks. RESULTS: Heritability estimates ranged from 2% to 4.2%, and significant genetic overlap was observed with cognition, attention deficit hyperactivity disorder, schizophrenia, alcohol and smoking traits, and body mass index. Two genome-wide significant loci were identified, both previously implicated in metabolic traits, suggesting shared biology and potential pharmacological implications. CONCLUSIONS: This work provides support for the utility of estimation of disease probability for genomic investigation and provides insights into the genetic architecture and biology of TRD.

2.
Biol Psychiatry Glob Open Sci ; 4(3): 100297, 2024 May.
Article in English | MEDLINE | ID: mdl-38645405

ABSTRACT

Background: Patients with schizophrenia have substantial comorbidity that contributes to reduced life expectancy of 10 to 20 years. Identifying modifiable comorbidities could improve rates of premature mortality. Conditions that frequently co-occur but lack shared genetic risk with schizophrenia are more likely to be products of treatment, behavior, or environmental factors and therefore are enriched for potentially modifiable associations. Methods: Phenome-wide comorbidity was calculated from electronic health records of 250,000 patients across 2 independent health care institutions (Vanderbilt University Medical Center and Mass General Brigham); associations with schizophrenia polygenic risk scores were calculated across the same phenotypes in linked biobanks. Results: Schizophrenia comorbidity was significantly correlated across institutions (r = 0.85), and the 77 identified comorbidities were consistent with prior literature. Overall, comorbidity and polygenic risk score associations were significantly correlated (r = 0.55, p = 1.29 × 10-118). However, directly testing for the absence of genetic effects identified 36 comorbidities that had significantly equivalent schizophrenia polygenic risk score distributions between cases and controls. This set included phenotypes known to be consequences of antipsychotic medications (e.g., movement disorders) or of the disease such as reduced hygiene (e.g., diseases of the nail), thereby validating the approach. It also highlighted phenotypes with less clear causal relationships and minimal genetic effects such as tobacco use disorder and diabetes. Conclusions: This work demonstrates the consistency and robustness of electronic health record-based schizophrenia comorbidities across independent institutions and with the existing literature. It identifies known and novel comorbidities with an absence of shared genetic risk, indicating other causes that may be modifiable and where further study of causal pathways could improve outcomes for patients.


Patients with schizophrenia have many co-occurring diseases that contribute substantially to premature mortality of 10 to 20 years. Conditions that are comorbid but lack shared genetic risk with schizophrenia are likely to have causes that are more modifiable. Here, we calculated comorbidity from electronic health records from 2 independent health care institutions and associations with schizophrenia polygenic risk scores across the same phenotypes in linked biobanks. We identified known and novel diseases comorbid with schizophrenia, thereby validating our approach.

3.
medRxiv ; 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37961557

ABSTRACT

The value of genetic information for improving the performance of clinical risk prediction models has yielded variable conclusions. Many methodological decisions have the potential to contribute to differential results across studies. Here, we performed multiple modeling experiments integrating clinical and demographic data from electronic health records (EHR) and genetic data to understand which decision points may affect performance. Clinical data in the form of structured diagnostic codes, medications, procedural codes, and demographics were extracted from two large independent health systems and polygenic risk scores (PRS) were generated across all patients with genetic data in the corresponding biobanks. Crohn's disease was used as the model phenotype based on its substantial genetic component, established EHR-based definition, and sufficient prevalence for model training and testing. We investigated the impact of PRS integration method, as well as choices regarding training sample, model complexity, and performance metrics. Overall, our results show that including PRS resulted in higher performance by some metrics but the gain in performance was only robust when combined with demographic data alone. Improvements were inconsistent or negligible after including additional clinical information. The impact of genetic information on performance also varied by PRS integration method, with a small improvement in some cases from combining PRS with the output of a clinical model (late-fusion) compared to its inclusion an additional feature (early-fusion). The effects of other modeling decisions varied between institutions though performance increased with more compute-intensive models such as random forest. This work highlights the importance of considering methodological decision points in interpreting the impact on prediction performance when including PRS information in clinical models.

4.
medRxiv ; 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37333378

ABSTRACT

Patients with schizophrenia have substantial comorbidity contributing to reduced life expectancy of 10-20 years. Identifying which comorbidities might be modifiable could improve rates of premature mortality in this population. We hypothesize that conditions that frequently co-occur but lack shared genetic risk with schizophrenia are more likely to be products of treatment, behavior, or environmental factors and therefore potentially modifiable. To test this hypothesis, we calculated phenome-wide comorbidity from electronic health records (EHR) in 250,000 patients in each of two independent health care institutions (Vanderbilt University Medical Center and Mass General Brigham) and association with schizophrenia polygenic risk scores (PRS) across the same phenotypes (phecodes) in linked biobanks. Comorbidity with schizophrenia was significantly correlated across institutions (r = 0.85) and consistent with prior literature. After multiple test correction, there were 77 significant phecodes comorbid with schizophrenia. Overall, comorbidity and PRS association were highly correlated (r = 0.55, p = 1.29×10-118), however, 36 of the EHR identified comorbidities had significantly equivalent schizophrenia PRS distributions between cases and controls. Fifteen of these lacked any PRS association and were enriched for phenotypes known to be side effects of antipsychotic medications (e.g., "movement disorders", "convulsions", "tachycardia") or other schizophrenia related factors such as from smoking ("bronchitis") or reduced hygiene (e.g., "diseases of the nail") highlighting the validity of this approach. Other phenotypes implicated by this approach where the contribution from shared common genetic risk with schizophrenia was minimal included tobacco use disorder, diabetes, and dementia. This work demonstrates the consistency and robustness of EHR-based schizophrenia comorbidities across independent institutions and with the existing literature. It identifies comorbidities with an absence of shared genetic risk indicating other causes that might be more modifiable and where further study of causal pathways could improve outcomes for patients.

5.
Cell Genom ; 3(4): 100277, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37082147

ABSTRACT

Autism spectrum disorder (ASD) is a heritable neurodevelopmental disorder characterized by deficits in social interactions and communication. Protein-altering variants in many genes have been shown to contribute to ASD; however, understanding the convergence across many genes remains a challenge. We demonstrate that coexpression patterns from 993 human postmortem brains are significantly correlated with the transcriptional consequences of CRISPR perturbations in human neurons. Across 71 ASD risk genes, there was significant tissue-specific convergence implicating synaptic pathways. Tissue-specific convergence was further demonstrated across schizophrenia and atrial fibrillation risk genes. The degree of ASD convergence was significantly correlated with ASD association from rare variation and differential expression in ASD brains. Positively convergent genes showed intolerance to functional mutations and had shorter coding lengths than known risk genes even after removing association with ASD. These results indicate that convergent coexpression can identify potentially novel genes that are unlikely to be discovered by sequencing studies.

6.
Sci Rep ; 12(1): 15146, 2022 09 07.
Article in English | MEDLINE | ID: mdl-36071081

ABSTRACT

Methods relying on diagnostic codes to identify suicidal ideation and suicide attempt in Electronic Health Records (EHRs) at scale are suboptimal because suicide-related outcomes are heavily under-coded. We propose to improve the ascertainment of suicidal outcomes using natural language processing (NLP). We developed information retrieval methodologies to search over 200 million notes from the Vanderbilt EHR. Suicide query terms were extracted using word2vec. A weakly supervised approach was designed to label cases of suicidal outcomes. The NLP validation of the top 200 retrieved patients showed high performance for suicidal ideation (area under the receiver operator curve [AUROC]: 98.6, 95% confidence interval [CI] 97.1-99.5) and suicide attempt (AUROC: 97.3, 95% CI 95.2-98.7). Case extraction produced the best performance when combining NLP and diagnostic codes and when accounting for negated suicide expressions in notes. Overall, we demonstrated that scalable and accurate NLP methods can be developed to identify suicidal behavior in EHRs to enhance prevention efforts, predictive models, and precision medicine.


Subject(s)
Suicidal Ideation , Suicide, Attempted , Electronic Health Records , Humans , Information Storage and Retrieval , Natural Language Processing
7.
Cell ; 185(16): 3041-3055.e25, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35917817

ABSTRACT

Rare copy-number variants (rCNVs) include deletions and duplications that occur infrequently in the global human population and can confer substantial risk for disease. In this study, we aimed to quantify the properties of haploinsufficiency (i.e., deletion intolerance) and triplosensitivity (i.e., duplication intolerance) throughout the human genome. We harmonized and meta-analyzed rCNVs from nearly one million individuals to construct a genome-wide catalog of dosage sensitivity across 54 disorders, which defined 163 dosage sensitive segments associated with at least one disorder. These segments were typically gene dense and often harbored dominant dosage sensitive driver genes, which we were able to prioritize using statistical fine-mapping. Finally, we designed an ensemble machine-learning model to predict probabilities of dosage sensitivity (pHaplo & pTriplo) for all autosomal genes, which identified 2,987 haploinsufficient and 1,559 triplosensitive genes, including 648 that were uniquely triplosensitive. This dosage sensitivity resource will provide broad utility for human disease research and clinical genetics.


Subject(s)
DNA Copy Number Variations , Genome, Human , DNA Copy Number Variations/genetics , Gene Dosage , Haploinsufficiency/genetics , Humans
8.
J Genet Couns ; 31(4): 1008-1015, 2022 08.
Article in English | MEDLINE | ID: mdl-35191121

ABSTRACT

Since nearly one-fifth of US adults have a psychiatric disorder, genetic counselors (GCs) will see many patients with these indications. However, GCs' reports of inadequate preparation and low confidence in providing care for patients with psychiatric disorders can limit their ability to meet patient's needs. How frequently psychiatric disorders present in GC sessions is currently unclear. Here, we used deidentified electronic health records (EHR) to estimate the prevalence of 16 psychiatric disorders. In 7,155 GC patients, 34% had a diagnostic code associated with a psychiatric disorder; 23% with anxiety/phobic disorders; 21% with mood disorder/depression; 5% with attention deficit hyperactivity disorder (ADHD); and 1% with psychotic disorders. Compared to 415,709 demographically matched controls, GC patients showed a significantly higher prevalence of psychiatric disorders (GC prevalence: 34%, matched prevalence: 30%, p-value < 0.0001) driven predominantly by anxiety disorder, major depressive disorder, generalized anxiety disorder, and ADHD. Within GC specialties (prenatal: n = 2,674, cancer: n = 1,474, pediatric: n = 465), only pediatric GC patients showed a significant increase in psychiatric disorder prevalence overall (pediatric GC prevalence: 28%, matched prevalence: 13%, p-value < 0.0001). However, significant evidence of increased prevalence existed for generalized anxiety disorder (prenatal GC prevalence 6.4%, matched prevalence: 4.9%, p-value < 0.0001), anxiety disorders (cancer GC prevalence: 26%, matched prevalence: 21%, p-value < 0.0001 and pediatric GC prevalence: 12%, matched prevalence: 5.5%), and ADHD (pediatric GC prevalence: 18%, matched prevalence: 7.9%, p-value < 0.0001). These results highlight the need for additional guidance around care for patients with psychiatric disorders and the value of EHR-based research in genetic counseling.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Depressive Disorder, Major , Mental Disorders , Adult , Attention Deficit Disorder with Hyperactivity/diagnosis , Attention Deficit Disorder with Hyperactivity/epidemiology , Attention Deficit Disorder with Hyperactivity/genetics , Child , Comorbidity , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/epidemiology , Depressive Disorder, Major/genetics , Electronic Health Records , Genetic Counseling , Humans , Mental Disorders/diagnosis , Mental Disorders/epidemiology , Mental Disorders/genetics
9.
Nat Med ; 27(6): 1097-1104, 2021 06.
Article in English | MEDLINE | ID: mdl-34083811

ABSTRACT

Around 5% of the population is affected by a rare genetic disease, yet most endure years of uncertainty before receiving a genetic test. A common feature of genetic diseases is the presence of multiple rare phenotypes that often span organ systems. Here, we use diagnostic billing information from longitudinal clinical data in the electronic health records (EHRs) of 2,286 patients who received a chromosomal microarray test, and 9,144 matched controls, to build a model to predict who should receive a genetic test. The model achieved high prediction accuracies in a held-out test sample (area under the receiver operating characteristic curve (AUROC), 0.97; area under the precision-recall curve (AUPRC), 0.92), in an independent hospital system (AUROC, 0.95; AUPRC, 0.62), and in an independent set of 172,265 patients in which cases were broadly defined as having an interaction with a genetics provider (AUROC, 0.9; AUPRC, 0.63). Patients carrying a putative pathogenic copy number variant were also accurately identified by the model. Compared with current approaches for genetic test determination, our model could identify more patients for testing while also increasing the proportion of those tested who have a genetic disease. We demonstrate that phenotypic patterns representative of a wide range of genetic diseases can be captured from EHRs to systematize decision-making for genetic testing, with the potential to speed up diagnosis, improve care and reduce costs.


Subject(s)
DNA Copy Number Variations/genetics , Genetic Diseases, Inborn/diagnosis , Genetic Testing , Rare Diseases/diagnosis , Adolescent , Adult , Child , Child, Preschool , Electronic Health Records , Female , Genetic Diseases, Inborn/pathology , Humans , Infant , Male , Microarray Analysis , Phenotype , Rare Diseases/genetics , Rare Diseases/pathology
10.
Genome Med ; 13(1): 6, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33441150

ABSTRACT

BACKGROUND: Clinical laboratory (lab) tests are used in clinical practice to diagnose, treat, and monitor disease conditions. Test results are stored in electronic health records (EHRs), and a growing number of EHRs are linked to patient DNA, offering unprecedented opportunities to query relationships between genetic risk for complex disease and quantitative physiological measurements collected on large populations. METHODS: A total of 3075 quantitative lab tests were extracted from Vanderbilt University Medical Center's (VUMC) EHR system and cleaned for population-level analysis according to our QualityLab protocol. Lab values extracted from BioVU were compared with previous population studies using heritability and genetic correlation analyses. We then tested the hypothesis that polygenic risk scores for biomarkers and complex disease are associated with biomarkers of disease extracted from the EHR. In a proof of concept analyses, we focused on lipids and coronary artery disease (CAD). We cleaned lab traits extracted from the EHR performed lab-wide association scans (LabWAS) of the lipids and CAD polygenic risk scores across 315 heritable lab tests then replicated the pipeline and analyses in the Massachusetts General Brigham Biobank. RESULTS: Heritability estimates of lipid values (after cleaning with QualityLab) were comparable to previous reports and polygenic scores for lipids were strongly associated with their referent lipid in a LabWAS. LabWAS of the polygenic score for CAD recapitulated canonical heart disease biomarker profiles including decreased HDL, increased pre-medication LDL, triglycerides, blood glucose, and glycated hemoglobin (HgbA1C) in European and African descent populations. Notably, many of these associations remained even after adjusting for the presence of cardiovascular disease and were replicated in the MGBB. CONCLUSIONS: Polygenic risk scores can be used to identify biomarkers of complex disease in large-scale EHR-based genomic analyses, providing new avenues for discovery of novel biomarkers and deeper understanding of disease trajectories in pre-symptomatic individuals. We present two methods and associated software, QualityLab and LabWAS, to clean and analyze EHR labs at scale and perform a Lab-Wide Association Scan.


Subject(s)
Biomarkers/metabolism , Clinical Laboratory Techniques , Disease/genetics , Multifactorial Inheritance/genetics , Biological Specimen Banks , Coronary Artery Disease/blood , Coronary Artery Disease/genetics , Female , Genome-Wide Association Study , Humans , Lipids/blood , Male , Middle Aged , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...