Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 47(12): 5184-9, 2008 Jun 16.
Article in English | MEDLINE | ID: mdl-18470984

ABSTRACT

One of the paradigms of Zn2+ metallobiochemistry is that coordination of water to Zn2+ provides a mechanism of activation that involves lowering the pKa by approximately 7 pH units. This idea has become central to the development of mechanisms of action for zinc metalloproteins. However, the direct measurement of the pKa of water bound to Zn2+ in a metalloprotein has yet to be accomplished. Developing models for Zn2+-OH2 species has been a significant challenge, but we have utilized solid-state 67Zn NMR spectroscopy as a means to characterize one of the few examples of water bound to mononuclear tetrahedral Zn2+: ([Tp(But,Me)]Zn(OH2))[HOB(C6F5)3]. The measured quadrupole coupling (Cq) constant is 4.3 MHz with an asymmetry parameter of etaq of 0.6. Likewise, due to the small value of Cq, anisotropic shielding also contributed to the observed 67Zn NMR lineshape. As expected, the computed values of the magnetic resonance parameters depend critically on the nature of the anion. The predicted value of Cq for ([Tp(But,Me)]Zn(OH2))[HOB(C6F5)3] is -4.88 MHz. We discuss the results of these calculations in terms of the nature of the anion, the local electrostatics, and its subsequent hydrogen bonding to [Tp(But,Me)]Zn(OH2)+.


Subject(s)
Anions/chemistry , Organometallic Compounds/chemistry , Zinc/chemistry , Computer Simulation , Magnetic Resonance Spectroscopy , Molecular Structure , Zinc Isotopes
2.
J Am Chem Soc ; 127(40): 14039-50, 2005 Oct 12.
Article in English | MEDLINE | ID: mdl-16201826

ABSTRACT

The zinc thiolate complex [Tm(Ph)]ZnSCH2C(O)N(H)Ph, which features a tetrahedral [ZnS4] motif analogous to that of the Ada DNA repair protein, may be obtained by the reaction of Zn(NO3)2 with [Tm(Ph)]Li and Li[SCH2C(O)N(H)Ph] ([Tm(Ph)] = tris(2-mercapto-1-phenylimidazolyl)hydroborato ligand). Structural characterization of [Tm(Ph)]ZnSCH2C(O)N(H)Ph by X-ray diffraction demonstrates that the molecule exhibits an intramolecular N-H...S hydrogen bond between the amide N-H group and thiolate sulfur atom, a structure that is reproduced by density functional theory (DFT) calculations. The thiolate ligand of [Tm(Ph)]ZnSCH2C(O)N(H)Ph is subject to alkylation, a reaction that is analogous to the function of the Ada DNA repair protein. Specifically, [Tm(Ph)]ZnSCH2C(O)N(H)Ph reacts with MeI to yield PhN(H)C(O)CH2SMe and [Tm(Ph)]ZnI, a reaction which is characterized by second-order kinetics that is consistent with either (i) an associative mechanism or (ii) a stepwise dissociative mechanism in which the alkylation step is rate determining. Although the kinetics studies are incapable of distinguishing between these possibilities, a small normal kinetic isotope effect of kH/kD = 1.16(1) at 0 degrees C for the reaction of [Tm(Ph)]ZnSCH2C(O)N(H*)Ph (H* = H, D) with MeI is suggestive of a dissociative mechanism on the basis of DFT calculations. In particular, DFT calculations demonstrate that a normal kinetic isotope effect requires thiolate dissociation because it results in the formation of [PhN(H)C(O)CH2S]- which, as an anion, exhibits a stronger N-H...S hydrogen bonding interaction than that in [Tm(Ph)]ZnSCH2C(O)N(H)Ph. Correspondingly, mechanisms that involve direct alkylation of coordinated thiolate are predicted to be characterized by kH/kD < or = 1 because the reaction involves a reduction of the negative charge on sulfur and hence a weakening of the N-H...S hydrogen bonding interaction.


Subject(s)
Organometallic Compounds/chemical synthesis , Sulfhydryl Compounds/chemical synthesis , Zinc/chemistry , Alkylation , Crystallography, X-Ray , Hydrogen Bonding , Kinetics , Models, Molecular , Molecular Structure , Organometallic Compounds/chemistry , Sulfhydryl Compounds/chemistry , Temperature
3.
Dalton Trans ; (21): 3448-52, 2004 Nov 07.
Article in English | MEDLINE | ID: mdl-15510261

ABSTRACT

The molecular structure of the tris(2-mercapto-1-tolylimidazolyl)hydroborato complex [[Tm(p-Tol)]Zn(mim(p-Tol))][ClO(4)].3MeCN has been determined by X-ray diffraction, thereby demonstrating that the mim(p-Tol) ligand exhibits a N-H...O hydrogen bond with the [ClO(4)](-) counterion, [[Tm(p-Tol)]Zn(mim(p-Tol))...(OClO(3))], rather than hydrogen bond with a sulfur of the [Tm(p-Tol)] ligand. DFT calculations on a series of related complexes, namely [[Tm(Me)]Zn(mim(Me))](+), [[Tm(Me)]Zn(mim(Me))]...(OClO(3))], [[Tm(Me)]Zn(mim(Me))]...[O(H)Me]](+), and [[Tm(Me)]Zn(mim(Me))]...(NCMe)](+) demonstrate that an intramolecular N-H...S hydrogen bond within [[Tm(Me)]Zn(mim(Me))](+) is also less favored than the corresponding hydrogen bonding interactions with MeCN, MeOH, and [ClO(4)](-). The inability of the sulfur atoms of [Tm(R)] ligand to act as an effective hydrogen bond acceptor is in marked contrast to the ability of sulfur atoms in thiolate ligands to participate in the formation of N-H...S hydrogen bonds, an observation that reflects the "thione"versus"thiolate" nature of the [Tm(R)] ligand.


Subject(s)
Imidazoles/chemistry , Organometallic Compounds/chemistry , Crystallography, X-Ray , Hydrogen Bonding , Ligands , Models, Molecular , Molecular Structure
4.
J Am Chem Soc ; 125(20): 6189-99, 2003 May 21.
Article in English | MEDLINE | ID: mdl-12785851

ABSTRACT

The tris(3-tert-butyl-5-methylpyrazolyl)hydroborato zinc hydroxide complex [Tp(Bu)t(,Me)]ZnOH is protonated by (C(6)F(5))(3)B(OH(2)) to yield the aqua derivative [[Tp(Bu)t(,Me)]Zn(OH(2))][HOB(C(6)F(5))(3)], which has been structurally characterized by X-ray diffraction, thereby demonstrating that protonation results in a lengthening of the Zn-O bond by ca. 0.1 A. The protonation is reversible, and treatment of [[Tp(Bu)t(,Me)]Zn(OH(2))](+) with Et(3)N regenerates [Tp(Bu)t(,Me)]ZnOH. Consistent with the notion that the catalytic hydration of CO(2) by carbonic anhydrase requires deprotonation of the coordinated water molecule, [[Tp(Bu)t(,Me)]Zn(OH(2))](+) is inert towards CO(2), whereas [Tp(Bu)t(,Me)]ZnOH is in rapid equilibrium with the bicarbonate complex [Tp(Bu)t(,Me)]ZnOC(O)OH under comparable conditions. The cobalt hydroxide complex [Tp(Bu)t(,Me)]CoOH is likewise protonated by (C(6)F(5))(3)B(OH(2)) to yield the aqua derivative [[Tp(Bu)t(,Me)]Co(OH(2))][HOB(C(6)F(5))(3)], which is isostructural with the zinc complex. The aqua complexes [[Tp(Bu)t(,Me)]M(OH(2))][HOB(C(6)F(5))(3)] (M = Zn, Co) exhibit a hydrogen bonding interaction between the metal aqua and boron hydroxide moieties. This hydrogen bonding interaction may be viewed as analogous to that between the aqua ligand and Thr-199 at the active site of carbonic anhydrase. In addition to the structural similarities between the zinc and cobalt complexes, [Tp(Bu)t(,Me)ZnOH] and [Tp(Bu)()t(,Me)]CoOH, and between [[Tp(Bu)t(,Me)]Zn(OH(2))](+) and [[Tp(Bu)t(,Me)]Co(OH(2))](+), DFT (B3LYP) calculations demonstrate that the pK(a) value of [[Tp]Zn(OH(2))](+) is similar to that of [[Tp]Co(OH(2))](+). These similarities are in accord with the observation that Co(II) is a successful substitute for Zn(II) in carbonic anhydrase. The cobalt hydroxide [Tp(Bu)()t(,Me)]CoOH reacts with CO(2) to give the bridging carbonate complex [[Tp(Bu)t(,Me)]Co](2)(mu-eta(1),eta(2)-CO(3)). The coordination mode of the carbonate ligand in this complex, which is bidentate to one cobalt center and unidentate to the other, is in contrast to that in the zinc counterpart [[Tp(Bu)t(,Me)]Zn](2)(mu-eta(1),eta(1)-CO(3)), which bridges in a unidentate manner to both zinc centers. This difference in coordination modes concurs with the suggestion that a possible reason for the lower activity of Co(II)-carbonic anhydrase is associated with enhanced bidentate coordination of bicarbonate inhibiting its displacement.


Subject(s)
Biomimetic Materials/chemistry , Carbon Dioxide/chemistry , Carbonic Anhydrases/chemistry , Cobalt/chemistry , Hydroxides/chemistry , Zinc Compounds/chemistry , Models, Molecular , Molecular Structure , Organometallic Compounds/chemistry , Protons , Spectrophotometry, Infrared , Thermodynamics , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...