Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Econ Entomol ; 108(2): 798-804, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26470192

ABSTRACT

A key component of Russian wheat aphid, Diuraphis noxia (Kurdjumov), management has been through planting resistant wheat cultivars. A new biotype, RWA2, appeared in 2003 which caused widespread damage to wheat cultivars containing the Dn4 gene. Biotypic diversity in Russian wheat aphid populations has not been addressed since 2005 when RWA2 dominated the biotype complex. Our objectives were to determine the biotypic diversity in the Central Great Plains and Colorado Plateau at regional (2010, 2011, 2013) and local (2012) levels and detect the presence of new Russian wheat aphid biotypes. Regional and within-field aphid collections were screened against Russian wheat aphid-resistant wheat genotypes containing genes Dn3, Dn4, Dn6, Dn7, Dn9, CI2401; and resistant barley STARS 9301B. In 2010, all aphid collections from Texas were avirulent to the Dn4 resistance gene in wheat. Regional results revealed Dn4 avirulent RWA6 was widespread (55-84%) in populations infesting wheat in both regions. Biotypes RWA1, 2, and 3/7 were equally represented with percentages<20% each while RWA8 was rarely detected. Combining percentages of RWA1, 6, and 8 across regions to estimate avirulence to Dn4 gene revealed high percentages for both 2011 (64-80%) and 2013 (69-90%). In contrast, the biotype structure at the local level differed where biotype percentages varied up to ≥2-fold between fields. No new biotypes were detected; therefore, Dn7, CI2401, and STARS9301B remained resistant to all known Russian wheat aphid biotypes. This study documents a shift to Dn4 avirulent biotypes and serves as a valuable baseline for biotypic diversity in Russian wheat aphid populations prior to the deployment of new Russian wheat aphid-resistant wheat cultivars.


Subject(s)
Aphids/physiology , Triticum/physiology , Animals , Aphids/classification , Hordeum , United States
2.
Bull Entomol Res ; 99(2): 163-73, 2009 Apr.
Article in English | MEDLINE | ID: mdl-18840314

ABSTRACT

Aphids are, arguably, the single most damaging group of agricultural insect pests throughout the world. Plant tolerance, which is a plant response to an insect pest, is viewed as an excellent management strategy. Developing testable hypotheses based on genome-wide and more focused methods will help in understanding the molecular underpinnings of plant tolerance to aphid herbivory. As a first step in this process, we undertook transcript profiling with Affymetrix GeneChip Barley Genome arrays using RNA extracted from tissues of tolerant and susceptible genotypes collected at three hours, three days and six days after Diuraphis noxia introduction. Acquired data were compared to identify changes unique to the tolerant barley at each harvest date. Transcript abundance of 4086 genes was differentially changed over the three harvest dates in tolerant and susceptible barley in response to D. noxia feeding. Across the three harvest dates, the greatest number of genes was differentially expressed in both barleys at three days after aphid introduction. A total of 909 genes showed significant levels of change in the tolerant barley in response to D. noxia feeding as compared to susceptible plants infested with aphids. Many of these genes could be assigned to specific metabolic categories, including several associated with plant defense and scavenging of reactive oxygen species (ROS). Interestingly, two peroxidase genes, designated HvPRXA1 and HvPRXA2, were up-regulated to a greater degree in response to D. noxia feeding on tolerant barley plants, indicating that specific peroxidases could be important for the tolerance process. These findings suggest that the ability to elevate and sustain levels of ROS-scavenging enzymes could play an important role in the tolerant response.


Subject(s)
Aphids/physiology , Gene Expression Profiling , Gene Expression Regulation, Plant , Hordeum/metabolism , Hordeum/parasitology , Animals , Genes, Plant/genetics , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction
3.
J Econ Entomol ; 100(5): 1685-91, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17972649

ABSTRACT

Biotypes are infraspecific classifications based on biological rather than morphological characteristics. Cereal aphids are managed primarily by host plant resistance, and they often develop biotypes that injure or kill previously resistant plants. Although molecular genetic variation within aphid biotypes has been well documented, little is known about phenotypic variation, especially virulence or the biotype's ability to cause injury to cultivars with specific resistance genes. Five clones (single maternal lineages) of Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Homoptera: Aphididae), determined to be injurious to wheat, Triticum aestivum L., with the Dn4 gene, were evaluated on resistant and susceptible wheat and barley, Hordeum vulgare L., for their ability to cause chlorosis, reduction in plant height, and reduction in shoot dry weight. Variation to cause injury on resistant 'Halt' wheat, susceptible 'Jagger' wheat, and resistant 'STARS-9301B' barley was found among the Dn4 virulent clones. One clone caused up to 30.0 and 59.5% more reduction in plant height and shoot dry weight, respectively, on resistant Halt than other clones. It also caused up to 29.9 and 55.5% more reduction in plant height and shoot dry weight, respectively, on susceptible Jagger wheat. Although STARS-9301B barley exhibited an equal resistant response to feeding by all five clones based on chlorosis, two clones caused approximately 20% more reduction in plant height and shoot dry weight than three other clones. The most injurious clones on wheat were not the most injurious clones on barley. This is the first report of variation to cause varying degrees of plant damage within an aphid biotype virulent to a single host resistance gene. A single aphid clone may not accurately represent the true virulent nature of a biotype population in the field.


Subject(s)
Aphids/physiology , Triticum/parasitology , Animals , Aphids/genetics , Feeding Behavior , Hordeum/genetics , Hordeum/growth & development , Hordeum/parasitology , Plant Diseases/parasitology , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Shoots/parasitology , Triticum/genetics , Triticum/growth & development
4.
J Econ Entomol ; 99(6): 2151-5, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17195687

ABSTRACT

Since 2003, four new biotypes of the Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Homoptera: Aphididae), RWA2-RWA5, have been discovered that have the ability to damage most of the wheat germplasm resistant to the original Russian wheat aphid population (RWA1). Barley germplasm lines with resistance to RWA1 have not yet been evaluated against the newest biotypes. Our study compared how biotypes RWA1-RWA5 affected the growth and leaf damage of RWA1-resistant germplasm (STARS 9301B, STARS 9577B), moderately resistant germplasm (MR-015), and susceptible varieties (Schuyler, Harrington, and Morex) under greenhouse conditions. Russian wheat aphid population levels also were determined 14 d after plant infestation. STARS 9301B exhibited strong resistance by showing only small differences in leaf damage and growth parameters from the feeding by the biotypes. STARS 9577B showed greater differences in damage by the Russian wheat aphid biotypes than STARS 9301B, yet, the ratings were still within the resistant category (e.g., chlorosis rating 2.3-4.9). Leaf chlorosis ratings for MR-015 ranged from 5.0 to 6.9 and fell within the moderately resistant to susceptible categories for all the biotypes. The greatest difference in leaf chlorosis occurred in Morex where RWA2 showed less virulence than the other biotypes. Feeding by the Russian wheat aphid biotypes produced only small differences in leaf rolling and plant growth within plant entries. Population levels of the Russian wheat aphid biotypes did not differ within barley entries (n = 610-971) at the termination of the study (14 d). From our research, we conclude that the new Russian wheat aphid biotypes pose no serious threat to the key sources of resistance in barley (STARS 9301B and 9577B).


Subject(s)
Aphids/physiology , Hordeum/parasitology , Triticum/physiology , Animals , Aphids/classification , Food Preferences , Genes, Plant , Host-Parasite Interactions , Triticum/parasitology
5.
Theor Appl Genet ; 84(7-8): 952-7, 1992 Sep.
Article in English | MEDLINE | ID: mdl-24201499

ABSTRACT

Genetic variation induced by passage through tissue culture (somaclonal variation) has been characterized for many agronomic traits of wheat. The study presented here was conducted to genetically and phenotypically characterize a mutation influencing plant height that was induced by wheat callus culture. Dwarf plants were identified in the progeny of a tall plant regenerated from immature embryo-derived callus tissue of the hard red winter wheat 'TAM 105'. The dwarfs are significantly shorter, later in heading, and have a greater number of tillers, fewer seeds per spike, lower grain yield per plant, and lower floret fertility than 'TAM 105'. The dwarfs also exhibit branching at the aerial nodes when grown under cool temperatures (<20°C) and short daylengths (<12h). We hypothesize that a single, partially dominant gene which acts in a complementary manner with the grass-dwarf gene D1 is responsible for this phenotype. Based on phenotype and the dominance relationship between mutant and wild-type alleles, we hypothesize that the mutation is a new allele at either the D2 or D4 grass-dwarfism locus. The utilization of genotypes lacking any of the grass-dwarfism alleles would greatly reduce the chance of recovering these undesirable genotypes by mutations arising during tissue culture. It is also important to recognize the grass-dwarf phenotype. If transgenic plants, somatic hybrids, or regenerants from in vitro selection strategies have a grass-dwarf phenotype, they can be induced to enter reproductive development by long daylengths (>14 h) and high temperatures (>26°C).

6.
Plant Physiol ; 83(4): 1014-7, 1987 Apr.
Article in English | MEDLINE | ID: mdl-16665315

ABSTRACT

Leaf gas exchange characteristics of a desert annual (Triticum kotschyi [Boiss.] Bowden) and the wheat cultivar TAM W-101 (Triticum aestivum L. em Thell) were compared over a range of leaf water potentials from -0.50 to -2.9 megapascals. At an ambient [CO(2)] of 330 microliters per liter, T. kotschyi had higher conductance and CO(2) assimilation (A) at a given water potential than T. aestivum. Under well watered conditions, A versus internal CO(2) concentration (C(i)) response curves for both species were similar in shape and magnitude, and the higher A of T. kotschyi at an ambient [CO(2)] of 330 microliters per liter was mostly related to the higher stomatal conductance of T. kotschyi. The higher conductance of T. kotschyi than T. aestivum under well watered conditions was associated with higher C(i) and lower water use efficiency. Under water deficits, however, C(i) at 330 microliters per liter ambient [CO(2)] did not differ significantly between species. T. kotschyi had higher A under water deficits than T. aestivum primarily because its A versus C(i) response curves had higher A at C(i) values above about 150 microliters per liter. The results show that conductance played an important role in the high A of T. kotschyi under well watered conditions, but under water deficits the high A of T. kotschyi was related more to the maintenance of a higher capacity for mesophyll photosynthesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...