Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Int J Mol Sci ; 25(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38891974

ABSTRACT

Tetanus disease, caused by C. tetani, starts with wounds or mucous layer contact. Prevented by vaccination, the lack of booster shots throughout life requires prophylactic treatment in case of accidents. The incidence of tetanus is high in underdeveloped countries, requiring the administration of antitetanus antibodies, usually derived from immunized horses or humans. Heterologous sera represent risks such as serum sickness. Human sera can carry unknown viruses. In the search for human monoclonal antibodies (mAbs) against TeNT (Tetanus Neurotoxin), we previously identified a panel of mAbs derived from B-cell sorting, selecting two nonrelated ones that binded to the C-terminal domain of TeNT (HCR/T), inhibiting its interaction with the cellular receptor ganglioside GT1b. Here, we present the results of cellular assays and molecular docking tools. TeNT internalization in neurons is prevented by more than 50% in neonatal rat spinal cord cells, determined by quantitative analysis of immunofluorescence punctate staining of Alexa Fluor 647 conjugated to TeNT. We also confirmed the mediator role of the Synaptic Vesicle Glycoprotein II (SV2) in TeNT endocytosis. The molecular docking assays to predict potential TeNT epitopes showed the binding of both antibodies to the HCR/T domain. A higher incidence was found between N1153 and W1297 when evaluating candidate residues for conformational epitope.


Subject(s)
Antibodies, Monoclonal , Endocytosis , Molecular Docking Simulation , Neurons , Tetanus Toxin , Animals , Rats , Neurons/metabolism , Humans , Antibodies, Monoclonal/immunology , Tetanus Toxin/immunology , Tetanus Toxin/metabolism , Tetanus/prevention & control , Tetanus/immunology , Epitopes/immunology , Gangliosides/immunology , Gangliosides/metabolism , Cells, Cultured , Computer Simulation , Metalloendopeptidases
2.
Front Immunol ; 14: 1206979, 2023.
Article in English | MEDLINE | ID: mdl-37876932

ABSTRACT

Introduction: Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces rapid production of IgM, IgA, and IgG antibodies directed to multiple viral antigens that may have impact diverse clinical outcomes. Methods: We evaluated IgM, IgA, and IgG antibodies directed to the nucleocapsid (NP), IgA and IgG to the Spike protein and to the receptor-binding domain (RBD), and the presence of neutralizing antibodies (nAb), in a cohort of unvaccinated SARS-CoV-2 infected individuals, in the first 30 days of post-symptom onset (PSO) (T1). Results: This study included 193 coronavirus disease 2019 (COVID-19) participants classified as mild, moderate, severe, critical, and fatal and 27 uninfected controls. In T1, we identified differential antibody profiles associated with distinct clinical presentation. The mild group presented lower levels of anti-NP IgG, and IgA (vs moderate and severe), anti-NP IgM (vs severe, critical and fatal), anti-Spike IgA (vs severe and fatal), and anti-RBD IgG (vs severe). The moderate group presented higher levels of anti-RBD IgA, comparing with severe group. The severe group presented higher levels of anti-NP IgA (vs mild and fatal) and anti-RBD IgG (vs mild and moderate). The fatal group presented higher levels of anti-NP IgM and anti-Spike IgA (vs mild), but lower levels of anti-NP IgA (vs severe). The levels of nAb was lower just in mild group compared to severe, critical, and fatal groups, moreover, no difference was observed among the more severe groups. In addition, we studied 82 convalescent individuals, between 31 days to 6 months (T2) or more than 6 months (T3), PSO, those: 12 mild, 26 moderate, and 46 severe plus critical. The longitudinal analyzes, for the severe plus critical group showed lower levels of anti-NP IgG, IgA and IgM, anti-Spike IgA in relation T3. The follow-up in the fatal group, reveals that the levels of anti-spike IgG increased, while anti-NP IgM levels was decreased along the time in severe/critical and fatal as well as anti-NP IgG and IgA in several/critical groups. Discussion: In summary, the anti-NP IgA and IgG lower levels and the higher levels of anti-RBD and anti-Spike IgA in fatal compared to survival group of individuals admitted to the intensive care unit (ICU). Collectively, our data discriminate death from survival, suggesting that anti-RBD IgA and anti-Spike IgA may play some deleterious effect, in contrast with the potentially protective effect of anti-NP IgA and IgG in the survival group.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Antibodies, Viral , Antibodies, Neutralizing , Nucleocapsid , Immunoglobulin G , Immunoglobulin A , Immunoglobulin M
3.
Microorganisms ; 11(10)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37894080

ABSTRACT

SARS-CoV-2 diagnostic tests have become an important tool for pandemic control. Among the alternatives for COVID-19 diagnosis, antigen rapid diagnostic tests (Ag-RDT) are very convenient and widely used. However, as SARS-CoV-2 variants may continuously emerge, the replacement of tests and reagents may be required to maintain the sensitivity of Ag-RDTs. Here, we describe the development and validation of an Ag-RDT during an outbreak of the Omicron variant, including the characterization of a new monoclonal antibody (anti-DTC-N 1B3 mAb) that recognizes the Nucleocapsid protein (N). The anti-DTC-N 1B3 mAb recognized the sequence TFPPTEPKKDKKK located at the C-terminus of the N protein of main SARS-CoV-2 variants of concern. Accordingly, the Ag-RDT prototypes using the anti-DTC-N 1B3 mAB detected all the SARS-CoV-2 variants-Wuhan, Alpha, Gamma, Delta, P2 and Omicron. The performance of the best prototype (sensitivity of 95.2% for samples with Ct ≤ 25; specificity of 98.3% and overall accuracy of 85.0%) met the WHO recommendations. Moreover, results from a patients' follow-up study indicated that, if performed within the first three days after onset of symptoms, the Ag-RDT displayed 100% sensitivity. Thus, the new mAb and the Ag-RDT developed herein may constitute alternative tools for COVID-19 point-of-care diagnosis and epidemiological surveillance.

4.
Bioengineered ; 14(1): 2252667, 2023 12.
Article in English | MEDLINE | ID: mdl-37661761

ABSTRACT

Disadvantages of using murine monoclonal antibodies (mAb) in human therapy, such as immunogenicity response, led to the development of technologies to transform murine antibodies into human antibodies. The murine anti-FGF2 3F12E7 mAb was proposed as a promising agent to treat metastatic melanoma tumors; once it blocks the FGF2, responsible for playing a role in tumor growth, angiogenesis, and metastasis. Considering the therapeutic potential of anti-FGF2 3F12E7 mAb and its limited use in humans due to its origin, we used this antibody as the template for a guided selection humanization technique to obtain human anti-FGF2 mAbs. Three Fab libraries (murine, hybrid, and human) were constructed for humanization. The libraries were phage-displayed, and the panning was performed against recombinant human FGF2 (rFGF2). The selected human variable light and heavy chains were cloned into AbVec vectors for full-length IgG expression into HEK293-F cells. Surface plasmon resonance analyses showed binding to rFGF2 of seven mAbs out of 20 expressed. Assays performed with these mAbs resulted in two that showed proliferation reduction and cell migration attenuation of HUVEC and SK-Mel-28 melanoma cells. In-silico analyses predicted that these two human anti-FGF2 mAbs interact with FGF2 at a similar patch of residues than the chimeric anti-FGF2 antibody, comprehending a region within the heparin-binding domains of FGF2, essential for its function. These results are comparable to those achieved by the murine anti-FGF2 3F12E7 mAb and showed success in the humanization process and selection of two human mAbs with the potential to inhibit undesirable FGF2 roles.


The guided selection humanization process enabled the production of 20 human mAbs anti-FGF2;Seven human anti-FGF2 mAbs showed binding to the rFGF2 antigen in the SPR binding assay;Two human anti-FGF2 mAbs inhibited the proliferation and migration of HUVEC and SK-Mel-28 cells and were predicted to contact the FGF2 at a similar patch of residues than the original mAb.


Subject(s)
Antibodies, Monoclonal , Melanoma , Humans , Animals , Mice , Hybridomas , HEK293 Cells , Cell Proliferation
5.
Front Immunol ; 14: 1197919, 2023.
Article in English | MEDLINE | ID: mdl-37575221

ABSTRACT

Removal of CD4 T cell epitopes from therapeutic antibody sequences is expected to mitigate their potential immunogenicity, but its application is complicated by the location of their T cell epitopes, which mainly overlap with complementarity-determining regions. We therefore evaluated the flexibility of antibody sequences to reduce the predicted affinity of corresponding peptides for HLA II molecules and to maintain antibody binding to its target in order to guide antibody engineering for mitigation of predicted immunogenicity. Permissive substitutions to reduce affinity of peptides for HLA II molecules were identified by establishing a heatmap of HLA class II binding using T-cell epitope prediction tools, while permissive substitutions preserving binding to the target were identified by means of deep mutational scanning and yeast surface display. Combinatorial libraries were then designed to identify active clones. Applied to adalimumab, an anti-TNFα human antibody, this approach identified 200 mutants with a lower HLA binding score than adalimumab. Three mutants were produced as full-length antibodies and showed a higher affinity for TNFα and neutralization ability than adalimumab. This study also sheds light on the permissiveness of antibody sequences with regard to functionality and predicted T cell epitope content.


Subject(s)
CD4-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , Humans , Adalimumab , Mutation , Peptides , Antibodies
6.
Vaccines (Basel) ; 11(7)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37514999

ABSTRACT

Immune responses after COVID-19 vaccination should be evaluated in different populations around the world. This study compared antibody responses induced by ChAdOx1 nCoV-19, CoronaVac, and BNT162b2 vaccines. Blood samples from vaccinees were collected pre- and post-vaccinations with the second and third doses. The study enrolled 78 vaccinees, of whom 62.8% were women, with the following median ages: 26 years-ChAdOx1 nCoV-19; 40 years-CoronaVac; 30 years-BNT162b2. Serum samples were quantified for anti-RBD IgG and anti-RBD IgA and anti-spike IgG by ELISA. After two vaccine doses, BNT162b2 vaccinees produced higher levels of anti-RBD IgA and IgG, and anti-spike IgG compared to ChAdOx1 nCoV-19 and CoronaVac vaccinees. The third dose booster with BNT162b2 induced higher levels of anti-RBD IgA and IgG, and anti-spike IgG in CoronaVac vaccinees. Individuals who reported a SARS-CoV-2 infection before or during the study had higher anti-RBD IgA and IgG production. In conclusion, two doses of the studied vaccines induced detectable levels of anti-RBD IgA and IgG and anti-spike IgG in vaccinees. The heterologous booster with BNT162b2 increased anti-RBD IgA and IgG and anti-spike IgG levels in CoronaVac vaccinees and anti-RBD IgA levels in ChAdOx1 nCoV-19 vaccinees. Furthermore, SARS-CoV-2 infection induced higher anti-RBD IgA and IgG levels in CoronaVac vaccinees.

7.
Microorganisms, v. 11, n. 10, 2422, set. 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5246

ABSTRACT

SARS-CoV-2 diagnostic tests have become an important tool for pandemic control. Among the alternatives for COVID-19 diagnosis, antigen rapid diagnostic tests (Ag-RDT) are very convenient and widely used. However, as SARS-CoV-2 variants may continuously emerge, the replacement of tests and reagents may be required to maintain the sensitivity of Ag-RDTs. Here, we describe the development and validation of an Ag-RDT during an outbreak of the Omicron variant, including the characterization of a new monoclonal antibody (anti-DTC-N 1B3 mAb) that recognizes the Nucleocapsid protein (N). The anti-DTC-N 1B3 mAb recognized the sequence TFPPTEPKKDKKK located at the C-terminus of the N protein of main SARS-CoV-2 variants of concern. Accordingly, the Ag-RDT prototypes using the anti-DTC-N 1B3 mAB detected all the SARS-CoV-2 variants—Wuhan, Alpha, Gamma, Delta, P2 and Omicron. The performance of the best prototype (sensitivity of 95.2% for samples with Ct ≤ 25; specificity of 98.3% and overall accuracy of 85.0%) met the WHO recommendations. Moreover, results from a patients’ follow-up study indicated that, if performed within the first three days after onset of symptoms, the Ag-RDT displayed 100% sensitivity. Thus, the new mAb and the Ag-RDT developed herein may constitute alternative tools for COVID-19 point-of-care diagnosis and epidemiological surveillance.

8.
Bioengineering, v. 14, n. 1, 2252667, set. 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5095

ABSTRACT

Disadvantages of using murine monoclonal antibodies (mAb) in human therapy, such as immunogenicity response, led to the development of technologies to transform murine antibodies into human antibodies. The murine anti-FGF2 3F12E7 mAb was proposed as a promising agent to treat metastatic melanoma tumors; once it blocks the FGF2, responsible for playing a role in tumor growth, angiogenesis, and metastasis. Considering the therapeutic potential of anti-FGF2 3F12E7 mAb and its limited use in humans due to its origin, we used this antibody as the template for a guided selection humanization technique to obtain human anti-FGF2 mAbs. Three Fab libraries (murine, hybrid, and human) were constructed for humanization. The libraries were phage-displayed, and the panning was performed against recombinant human FGF2 (rFGF2). The selected human variable light and heavy chains were cloned into AbVec vectors for full-length IgG expression into HEK293-F cells. Surface plasmon resonance analyses showed binding to rFGF2 of seven mAbs out of 20 expressed. Assays performed with these mAbs resulted in two that showed proliferation reduction and cell migration attenuation of HUVEC and SK-Mel-28 melanoma cells. In-silico analyses predicted that these two human anti-FGF2 mAbs interact with FGF2 at a similar patch of residues than the chimeric anti-FGF2 antibody, comprehending a region within the heparin-binding domains of FGF2, essential for its function. These results are comparable to those achieved by the murine anti-FGF2 3F12E7 mAb and showed success in the humanization process and selection of two human mAbs with the potential to inhibit undesirable FGF2 roles.

9.
Front Immunol, v. 14, jul. 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5021

ABSTRACT

Removal of CD4 T cell epitopes from therapeutic antibody sequences is expected to mitigate their potential immunogenicity, but its application is complicated by the location of their T cell epitopes, which mainly overlap with complementarity-determining regions. We therefore evaluated the flexibility of antibody sequences to reduce the predicted affinity of corresponding peptides for HLA II molecules and to maintain antibody binding to its target in order to guide antibody engineering for mitigation of predicted immunogenicity. Permissive substitutions to reduce affinity of peptides for HLA II molecules were identified by establishing a heatmap of HLA class II binding using T-cell epitope prediction tools, while permissive substitutions preserving binding to the target were identified by means of deep mutational scanning and yeast surface display. Combinatorial libraries were then designed to identify active clones. Applied to adalimumab, an anti-TNFα human antibody, this approach identified 200 mutants with a lower HLA binding score than adalimumab. Three mutants were produced as full-length antibodies and showed a higher affinity for TNFα and neutralization ability than adalimumab. This study also sheds light on the permissiveness of antibody sequences with regard to functionality and predicted T cell epitope content.

10.
Vaccines, v. 11, n. 7, 1183, jun. 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4980

ABSTRACT

Immune responses after COVID-19 vaccination should be evaluated in different populations around the world. This study compared antibody responses induced by ChAdOx1 nCoV-19, CoronaVac, and BNT162b2 vaccines. Blood samples from vaccinees were collected pre- and post-vaccinations with the second and third doses. The study enrolled 78 vaccinees, of whom 62.8% were women, with the following median ages: 26 years—ChAdOx1 nCoV-19; 40 years—CoronaVac; 30 years—BNT162b2. Serum samples were quantified for anti-RBD IgG and anti-RBD IgA and anti-spike IgG by ELISA. After two vaccine doses, BNT162b2 vaccinees produced higher levels of anti-RBD IgA and IgG, and anti-spike IgG compared to ChAdOx1 nCoV-19 and CoronaVac vaccinees. The third dose booster with BNT162b2 induced higher levels of anti-RBD IgA and IgG, and anti-spike IgG in CoronaVac vaccinees. Individuals who reported a SARS-CoV-2 infection before or during the study had higher anti-RBD IgA and IgG production. In conclusion, two doses of the studied vaccines induced detectable levels of anti-RBD IgA and IgG and anti-spike IgG in vaccinees. The heterologous booster with BNT162b2 increased anti-RBD IgA and IgG and anti-spike IgG levels in CoronaVac vaccinees and anti-RBD IgA levels in ChAdOx1 nCoV-19 vaccinees. Furthermore, SARS-CoV-2 infection induced higher anti-RBD IgA and IgG levels in CoronaVac vaccinees.

11.
Pharmaceutics ; 14(10)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36297421

ABSTRACT

Tetanus toxin (TeNT) is produced by C. tetani, a spore-forming bacillus broadly spread in the environment. Although an inexpensive and safe vaccine is available, tetanus persists because of a lack of booster shots and variable responses to vaccines due to immunocompromised status or age-decreased immune surveillance. Tetanus is most prevalent in low- and medium-income countries, where it remains a health problem. Neutralizing monoclonal antibodies (mAbs) can prevent the severity of illness and death caused by C. tetani infection. We identified a panel of mAbs that bind to TeNT, some of which were investigated in a preclinical assay, showing that a trio of mAbs that bind to different sites of TeNT can neutralize the toxin and prevent symptoms and death in mice. We also identified two mAbs that can impair the binding of TeNT to the GT1b ganglioside receptor in neurons. In this work, to generate a series of cell lines, we constructed vectors containing sequences encoding heavy and light constant regions that can receive the paired variable regions resulting from PCRs of human B cells. In this way, we generated stable cell lines for five mAbs and compared and characterized the antibody produced in large quantities, enabling the characterization experiments. We present the results regarding the cell growth and viability in a fed-batch culture, titer measurement, and specific productivity estimation. The affinity of purified mAbs was analyzed by kinetics and under steady-state conditions, as three mAbs could not dissociate from TeNT within 36,000 s. The binding of mAbs to TeNT was confirmed by ELISA and inhibition of toxin binding to GT1b. The use of the mAbs mixture confirmed the individual mAb contribution to inhibition. We also analyzed the binding of mAbs to FcγR by surface plasmon resonance (SPR) and the glycan composition. Molecular docking analyses showed the binding site of an anti-tetanus mAb.

12.
Front Immunol ; 13: 871874, 2022.
Article in English | MEDLINE | ID: mdl-35898497

ABSTRACT

The COVID-19 pandemic caused by the severe acute syndrome virus 2 (SARS-CoV-2) has been around since November 2019. As of early June 2022, more than 527 million cases were diagnosed, with more than 6.0 million deaths due to this disease. Coronaviruses accumulate mutations and generate greater diversity through recombination when variants with different mutations infect the same host. Consequently, this virus is predisposed to constant and diverse mutations. The SARS-CoV-2 variants of concern/interest (VOCs/VOIs) such as Alpha (B.1.1.7), Beta (B.1.351), Gamma (B.1.1.28/P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) have quickly spread across the world. These VOCs and VOIs have accumulated mutations within the spike protein receptor-binding domain (RBD) which interacts with the angiotensin-2 converting enzyme (ACE-2) receptor, increasing cell entry and infection. The RBD region is the main target for neutralizing antibodies; however, other notable mutations have been reported to enhance COVID-19 infectivity and lethality. Considering the urgent need for alternative therapies against this virus, an anti-SARS-CoV-2 equine immunoglobulin F(ab')2, called ECIG, was developed by the Butantan Institute using the whole gamma-irradiated SARS-CoV-2 virus. Surface plasmon resonance experiments revealed that ECIG binds to wild-type and mutated RBD, S1+S2 domains, and nucleocapsid proteins of known VOCs, including Alpha, Gamma, Beta, Delta, Delta Plus, and Omicron. Additionally, it was observed that ECIG attenuates the binding of RBD (wild-type, Beta, and Omicron) to human ACE-2, suggesting that it could prevent viral entry into the host cell. Furthermore, the ability to concomitantly bind to the wild-type and mutated nucleocapsid protein likely enhances its neutralizing activity of SARS-CoV-2. We postulate that ECIG benefits COVID-19 patients by reducing the infectivity of the original virus and existing variants and may be effective against future ones. Impacting the course of the disease, mainly in the more vulnerable, reduces infection time and limits the appearance of new variants by new recombination.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Animals , Antibodies, Viral , Horses , Humans , Nucleocapsid Proteins , Pandemics , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus
13.
Pharmaceutics, v. 14 ,10 , 1985, set. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4671

ABSTRACT

Tetanus toxin (TeNT) is produced by C. tetani, a spore-forming bacillus broadly spread in the environment. Although an inexpensive and safe vaccine is available, tetanus persists because of a lack of booster shots and variable responses to vaccines due to immunocompromised status or age-decreased immune surveillance. Tetanus is most prevalent in low- and medium-income countries, where it remains a health problem. Neutralizing monoclonal antibodies (mAbs) can prevent the severity of illness and death caused by C.tetani infection. We identified a panel of mAbs that bind to TeNT, some of which were investigated in a preclinical assay, showing that a trio of mAbs that bind to different sites of TeNT can neutralize the toxin and prevent symptoms and death in mice. We also identified two mAbs that can impair the binding of TeNT to the GT1b ganglioside receptor in neurons. In this work, to generate a series of cell lines, we constructed vectors containing sequences encoding heavy and light constant regions that can receive the paired variable regions resulting from PCRs of human B cells. In this way, we generated stable cell lines for five mAbs and compared and characterized the antibody produced in large quantities, enabling the characterization experiments. We present the results regarding the cell growth and viability in a fed-batch culture, titer measurement, and specific productivity estimation. The affinity of purified mAbs was analyzed by kinetics and under steady-state conditions, as three mAbs could not dissociate from TeNT within 36,000 s. The binding of mAbs to TeNT was confirmed by ELISA and inhibition of toxin binding to GT1b. The use of the mAbs mixture confirmed the individual mAb contribution to inhibition. We also analyzed the binding of mAbs to FcγR by surface plasmon resonance (SPR) and the glycan composition. Molecular docking analyses showed the binding site of an anti-tetanus mAb.

14.
Front Immunol, v. 13, 871874, jul. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4442

ABSTRACT

The COVID-19 pandemic caused by the severe acute syndrome virus 2 (SARS-CoV-2) has been around since November 2019. As of early June 2022, more than 527 million cases were diagnosed, with more than 6.0 million deaths due to this disease. Coronaviruses accumulate mutations and generate greater diversity through recombination when variants with different mutations infect the same host. Consequently, this virus is predisposed to constant and diverse mutations. The SARS-CoV-2 variants of concern/interest (VOCs/VOIs) such as Alpha (B.1.1.7), Beta (B.1.351), Gamma (B.1.1.28/P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) have quickly spread across the world. These VOCs and VOIs have accumulated mutations within the spike protein receptor-binding domain (RBD) which interacts with the angiotensin-2 converting enzyme (ACE-2) receptor, increasing cell entry and infection. The RBD region is the main target for neutralizing antibodies; however, other notable mutations have been reported to enhance COVID-19 infectivity and lethality. Considering the urgent need for alternative therapies against this virus, an anti-SARS-CoV-2 equine immunoglobulin F(ab’)2, called ECIG, was developed by the Butantan Institute using the whole gamma-irradiated SARS-CoV-2 virus. Surface plasmon resonance experiments revealed that ECIG binds to wild-type and mutated RBD, S1+S2 domains, and nucleocapsid proteins of known VOCs, including Alpha, Gamma, Beta, Delta, Delta Plus, and Omicron. Additionally, it was observed that ECIG attenuates the binding of RBD (wild-type, Beta, and Omicron) to human ACE-2, suggesting that it could prevent viral entry into the host cell. Furthermore, the ability to concomitantly bind to the wild-type and mutated nucleocapsid protein likely enhances its neutralizing activity of SARS-CoV-2. We postulate that ECIG benefits COVID-19 patients by reducing the infectivity of the original virus and existing variants and may be effective against future ones. Impacting the course of the disease, mainly in the more vulnerable, reduces infection time and limits the appearance of new variants by new recombination.

15.
Toxins (Basel) ; 13(12)2021 12 03.
Article in English | MEDLINE | ID: mdl-34941703

ABSTRACT

Oral tolerance is defined as a specific suppression of cellular and humoral immune responses to a particular antigen through prior oral administration of an antigen. It has unique immunological importance since it is a natural and continuous event driven by external antigens. It is characterized by low levels of IgG in the serum of animals after immunization with the antigen. There is no report of induction of oral tolerance to Bothrops jararaca venom. Here, we induced oral tolerance to B. jararaca venom in BALB/c mice and evaluated the specific tolerance and cross-reactivity with the toxins of other Bothrops species after immunization with the snake venoms adsorbed to/encapsulated in nanostructured SBA-15 silica. Animals that received a high dose of B. jararaca venom (1.8 mg) orally responded by showing antibody titers similar to those of immunized animals. On the other hand, mice tolerized orally with three doses of 1 µg of B. jararaca venom showed low antibody titers. In animals that received a low dose of B. jararaca venom and were immunized with B. atrox or B. jararacussu venom, tolerance was null or only partial. Immunoblot analysis against the venom of different Bothrops species provided details about the main tolerogenic epitopes and clearly showed a difference compared to antiserum of immunized animals.


Subject(s)
Cross Reactions/immunology , Crotalid Venoms/immunology , Immune Tolerance , Administration, Oral , Animals , Antibodies/blood , Bothrops , Crotalid Venoms/administration & dosage , Female , Mice, Inbred BALB C , Nanostructures , Silicon Dioxide/chemistry , Species Specificity , Viper Venoms/immunology , Viperidae
16.
Toxins (Basel) ; 13(11)2021 11 22.
Article in English | MEDLINE | ID: mdl-34822608

ABSTRACT

Hemolytic Uremic Syndrome (HUS) associated with Shiga-toxigenic Escherichia coli (STEC) infections is the principal cause of acute renal injury in pediatric age groups. Shiga toxin type 2 (Stx2) has in vitro cytotoxic effects on kidney cells, including human glomerular endothelial (HGEC) and Vero cells. Neither a licensed vaccine nor effective therapy for HUS is available for humans. Recombinant antibodies against Stx2, produced in bacteria, appeared as the utmost tool to prevent HUS. Therefore, in this work, a recombinant FabF8:Stx2 was selected from a human Fab antibody library by phage display, characterized, and analyzed for its ability to neutralize the Stx activity from different STEC-Stx2 and Stx1/Stx2 producing strains in a gold standard Vero cell assay, and the Stx2 cytotoxic effects on primary cultures of HGEC. This recombinant Fab showed a dissociation constant of 13.8 nM and a half maximum effective concentration (EC50) of 160 ng/mL to Stx2. Additionally, FabF8:Stx2 neutralized, in different percentages, the cytotoxic effects of Stx2 and Stx1/2 from different STEC strains on Vero cells. Moreover, it significantly prevented the deleterious effects of Stx2 in a dose-dependent manner (up to 83%) in HGEC and protected this cell up to 90% from apoptosis and necrosis. Therefore, this novel and simple anti-Stx2 biomolecule will allow further investigation as a new therapeutic option that could improve STEC and HUS patient outcomes.


Subject(s)
Antibodies, Monoclonal/pharmacology , Hemolytic-Uremic Syndrome/prevention & control , Immunoglobulin Fab Fragments/immunology , Shiga Toxin 2/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Apoptosis/drug effects , Chlorocebus aethiops , Dose-Response Relationship, Drug , Epithelial Cells/drug effects , Epithelial Cells/pathology , Humans , Immunoglobulin Fab Fragments/administration & dosage , Kidney Glomerulus/cytology , Kidney Glomerulus/drug effects , Kidney Glomerulus/pathology , Recombinant Proteins , Shiga Toxin 1/immunology , Shiga Toxin 1/toxicity , Shiga Toxin 2/toxicity , Shiga-Toxigenic Escherichia coli/immunology , Vero Cells
17.
Int J Gynecol Cancer ; 31(4): 562-568, 2021 04.
Article in English | MEDLINE | ID: mdl-33664128

ABSTRACT

OBJECTIVE: To investigate the efficacy and safety of hu3S193, a humanized anti-Lewis-Y monoclonal antibody, as a consolidation strategy in patients with platinum-sensitive recurrent epithelial ovarian cancer who achieved a second complete response after salvage platinum-doublet chemotherapy. METHODS: This single-arm phase II study accrued patients with recurrent epithelial ovarian cancer with Lewis-Y expression by immunohistochemistry who had achieved a second complete response after five to eight cycles of platinum-based chemotherapy. Patients received intravenous infusions of hu3S193, 30 mg/m2 every 2 weeks starting no more than 8 weeks after the last dose of chemotherapy and continuing for 12 doses, until disease progression, or unacceptable toxicity. The primary endpoint was progression-free survival of the second remission. Secondary objectives were safety and pharmacokinetics. RESULTS: Twenty-nine patients were enrolled. Most had a papillary/serous histology tumor (94%), stage III disease at diagnosis (75%), and five (17%) underwent secondary cytoreduction before salvage chemotherapy. Two patients were not eligible for efficacy but were considered for toxicity analysis. Eighteen patients (62%) completed the full consolidation treatment while nine patients progressed on treatment. At the time of analysis, 23 patients (85%) of the eligible population had progressed and seven of these patients (26%) had died. Median progression-free survival of the second remission was 12.1 months (95% CI: 10.6-13.9), with a 1-year progression-free survival of the second remission rate of 50.1%. The trial was terminated early since it was unlikely that the primary objective would be achieved. The most commonly reported treatment-related adverse events were nausea (55%) and vomiting (51%). CONCLUSIONS: Hu3S193 did not show sufficient clinical activity as consolidation therapy in patients with recurrent epithelial ovarian cancer who achieved a second complete response after platinum-based chemotherapy. TRIAL REGISTRATION: NCT01137071.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Carcinoma, Ovarian Epithelial/drug therapy , Consolidation Chemotherapy/methods , Remission Induction/methods , Adult , Aged , Antibodies, Monoclonal, Humanized/pharmacology , Disease-Free Survival , Female , Humans , Middle Aged
18.
Toxins, v. 13, n. 12, 865, dez. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4082

ABSTRACT

Oral tolerance is defined as a specific suppression of cellular and humoral immune responses to a particular antigen through prior oral administration of an antigen. It has unique immunological importance since it is a natural and continuous event driven by external antigens. It is characterized by low levels of IgG in the serum of animals after immunization with the antigen. There is no report of induction of oral tolerance to Bothrops jararaca venom. Here, we induced oral tolerance to B. jararaca venom in BALB/c mice and evaluated the specific tolerance and cross-reactivity with the toxins of other Bothrops species after immunization with the snake venoms adsorbed to/encapsulated in nanostructured SBA-15 silica. Animals that received a high dose of B. jararaca venom (1.8 mg) orally responded by showing antibody titers similar to those of immunized animals. On the other hand, mice tolerized orally with three doses of 1 µg of B. jararaca venom showed low antibody titers. In animals that received a low dose of B. jararaca venom and were immunized with B. atrox or B. jararacussu venom, tolerance was null or only partial. Immunoblot analysis against the venom of different Bothrops species provided details about the main tolerogenic epitopes and clearly showed a difference compared to antiserum of immunized animals.

19.
Toxins, v. 13, n. 11, 825, nov. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4009

ABSTRACT

Hemolytic Uremic Syndrome (HUS) associated with Shiga-toxigenic Escherichia coli (STEC) infections is the principal cause of acute renal injury in pediatric age groups. Shiga toxin type 2 (Stx2) has in vitro cytotoxic effects on kidney cells, including human glomerular endothelial (HGEC) and Vero cells. Neither a licensed vaccine nor effective therapy for HUS is available for humans. Recombinant antibodies against Stx2, produced in bacteria, appeared as the utmost tool to prevent HUS. Therefore, in this work, a recombinant FabF8:Stx2 was selected from a human Fab antibody library by phage display, characterized, and analyzed for its ability to neutralize the Stx activity from different STEC-Stx2 and Stx1/Stx2 producing strains in a gold standard Vero cell assay, and the Stx2 cytotoxic effects on primary cultures of HGEC. This recombinant Fab showed a dissociation constant of 13.8 nM and a half maximum effective concentration (EC50) of 160 ng/mL to Stx2. Additionally, FabF8:Stx2 neutralized, in different percentages, the cytotoxic effects of Stx2 and Stx1/2 from different STEC strains on Vero cells. Moreover, it significantly prevented the deleterious effects of Stx2 in a dose-dependent manner (up to 83%) in HGEC and protected this cell up to 90% from apoptosis and necrosis. Therefore, this novel and simple anti-Stx2 biomolecule will allow further investigation as a new therapeutic option that could improve STEC and HUS patient outcomes.

20.
Int J Gynecol Cancer, v. 31, n. 4, p. 562-568, abr. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3667

ABSTRACT

Objective To investigate the efficacy and safety of hu3S193, a humanized anti-Lewis-Y monoclonal antibody, as a consolidation strategy in patients with platinum-sensitive recurrent epithelial ovarian cancer who achieved a second complete response after salvage platinum-doublet chemotherapy. Methods This single-arm phase II study accrued patients with recurrent epithelial ovarian cancer with Lewis-Y expression by immunohistochemistry who had achieved a second complete response after five to eight cycles of platinum-based chemotherapy. Patients received intravenous infusions of hu3S193, 30 mg/m2 every 2 weeks starting no more than 8 weeks after the last dose of chemotherapy and continuing for 12 doses, until disease progression, or unacceptable toxicity. The primary endpoint was progression-free survival of the second remission. Secondary objectives were safety and pharmacokinetics. Results Twenty-nine patients were enrolled. Most had a papillary/serous histology tumor (94%), stage III disease at diagnosis (75%), and five (17%) underwent secondary cytoreduction before salvage chemotherapy. Two patients were not eligible for efficacy but were considered for toxicity analysis. Eighteen patients (62%) completed the full consolidation treatment while nine patients progressed on treatment. At the time of analysis, 23 patients (85%) of the eligible population had progressed and seven of these patients (26%) had died. Median progression-free survival of the second remission was 12.1 months (95% CI: 10.6–13.9), with a 1-year progression-free survival of the second remission rate of 50.1%. The trial was terminated early since it was unlikely that the primary objective would be achieved. The most commonly reported treatment-related adverse events were nausea (55%) and vomiting (51%). Conclusions Hu3S193 did not show sufficient clinical activity as consolidation therapy in patients with recurrent epithelial ovarian cancer who achieved a second complete response after platinum-based chemotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...