Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Food Microbiol ; 374: 109723, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35643035

ABSTRACT

Organic acids and their salts are usually the first choice in the bread industry to restrict fungal spoilage, but their efficacy is pH-dependent and spoilage by fungi remains as a common threat. Therefore, this study aimed to evaluate the susceptibility of spoilage fungi of bakery products to acetic, sorbic, and propionic acids at different pH. Penicillium roqueforti, Penicilium paneum, Aspergillus pseudoglaucus, Aspergillus montevidensis and Hyphopichia burtonii strains isolated from spoiled products had their minimum inhibitory concentration (MIC) defined by macrodilution. The concentrations tested were: (i) sorbic acid up to 32 mM; (ii) propionic acid up to 1024 mM and (iii) acetic acid up to 800 mM with pH adjusted in 4.5, 5.0, 5.0 and 6.0 after setting the agent concentration. The lowest MICs for all agents were obtained at pH 4.5, usually doubling with every 0.5 pH increase. P. roqueforti strains isolated from spoiled products were the most resistant to all tested preservatives; while strains of the related species P. paneum, showed similar tolerance to acetic and propionic acids but was double more susceptible to sorbic acid. Strains of A. pseudoglaucus and A. montevidensis were indistinctly susceptible to the preservatives and were the most susceptible species to propionic and acetic acids. H. burtonii strains demonstrated the most variable behaviour in comparison to the other strains being the most susceptible to sorbic acid, were like Aspergillus strains regarding propionic acid, but tolerate well acetic acid. Propionic acid concentrations usually allowed in baked goods are lower than the concentrations required to inhibit the most tolerant isolates tested in this study. The same is true for sorbic acid at higher pH levels. Spoilage species of bakery ware presents a distinct susceptibility profile to the preservatives commonly used in this sector, but the high tolerance observed is a cause of concern.


Subject(s)
Food Preservatives , Sorbic Acid , Acetic Acid/pharmacology , Acids/pharmacology , Bread/microbiology , Food Preservatives/pharmacology , Fungi , Hydrogen-Ion Concentration , Propionates/pharmacology , Sorbic Acid/pharmacology
2.
Food Microbiol ; 73: 93-98, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29526231

ABSTRACT

The aim of this study was to identify fungal species present in 200 samples of rosemary, fennel, cinnamon, clove, pepperoni, black and white pepper and oregano and evaluate the mycotoxigenic potential of the some Aspergilli isolated. Clove, black and white peppers were analyzed by direct plating. For rosemary, cinnamon, fennel, pepperoni pepper and oregano samples were used spread plate. Mycotoxigenic capacity was verified by the agar plug method. With the exception of clove, all the spices showed high fungal contamination, especially by Aspergillus sp., Penicillium sp. and Cladosporium sp. Frequency of toxigenic Aspergillus spp. was intense in white and black peppers, with presence of Aspergillus flavus (up to 32%), Aspergillus nomius (up to 12%), Aspergillus parasiticus (up to 4%), Aspergillus niger complex (up to 52%), Aspergillus ochraceus (up 12%) and Aspergillus carbonarius (up to 4%). 14,2% of A. flavus isolated from black pepper were aflatoxins producers. In the white pepper, 66.7% of A. flavus isolates and 100% of A. nomius were aflatoxigenic. Oregano showed the highest number of A. niger complex isolates (49), however, only 2.04% produced ochratoxin A. This study showed a huge fungal presence in spices, which could compromise the sensorial quality of these products and represent a hazard for consumers.


Subject(s)
Aspergillus flavus/isolation & purification , Aspergillus niger/isolation & purification , Cladosporium/isolation & purification , Food Contamination/analysis , Mycotoxins/analysis , Penicillium/isolation & purification , Spices/microbiology , Aspergillus flavus/genetics , Aspergillus flavus/metabolism , Aspergillus niger/genetics , Aspergillus niger/metabolism , Cladosporium/genetics , Cladosporium/metabolism , Mycotoxins/metabolism , Penicillium/genetics , Penicillium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...