Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 799: 149368, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34352461

ABSTRACT

Soil fungi play an important role in promoting nutrient cycling and maintaining ecosystem stability. Yet, there has been little understanding of how fungal co-occurrence networks differ along elevational climate gradients, a topic of interest to both macroecology and climate change studies. Based on high-throughput sequencing technology, we investigated the trend in co-occurrence network structure of soil fungal communities at 11 elevation levels along a 2300 m elevation gradient on Mt. Norikura, Japan, and identified the keystone taxa in the network, hypothesizing a progressive decline in network connectivity with elevation due to decreased plant diversity and enhanced environmental stress caused by changes in climate and soil characteristics. Our results demonstrated that network-level topological features such as network size, average degree, clustering coefficient, and modularity decreased significantly with increasing elevation, indicating that the fungal OTUs at low elevation were more closely associated and the network structure was more compact at low elevations. This conclusion was verified by the negative correlation between positive cohesion, negative cohesion and elevation. Moreover, the negative/positive cohesion ratio reached its peak value in mid-elevations with moderate environmental stress, indicating that the fungal community structure in mid-elevations was more stable than that at other elevations. We also found that the keystone taxa were more abundant at lower elevations. Furthermore, statistical analysis revealed that against a background of uniform geology, climate may play a dominant role in determining the properties and intensity of soil fungal networks, and significantly affect the abundance distribution of keystone taxa. These findings enhance understanding of the pattern and mechanism of the fungal community co-occurrence network along elevation, as well as the responses of microorganisms to climate change on a vertical scale in montane ecosystems. IMPORTANCE: Exploration of the elevational distribution of microbial networks and their driving factors and mechanisms may provide opportunities for predicting potential impacts of environmental changes, on ecosystem functions and biogeographic patterns at a broad scale. Although many studies have explored patterns of fungal community diversity and composition along various environmental gradients, it is unclear how the topological structure of co-occurrence networks shifts along elevational temperature gradients. In this study, we found that the connectivity of the fungal community decreased with increasing elevation and that climate was the dominant factor regulating co-occurrence patterns, apparently acting indirectly through soil characteristics. Our results also suggest that higher elevations on mountains have fewer keystone taxa than low elevations. These patterns may be related to the decrease of plant diversity and the increase of environmental stress along elevation gradients.


Subject(s)
Ecosystem , Mycobiome , Biodiversity , Fungi , Japan , Soil , Soil Microbiology
2.
FEMS Microbiol Ecol ; 97(1)2021 01 08.
Article in English | MEDLINE | ID: mdl-33367840

ABSTRACT

Managed agricultural ecosystems are unique systems where crops and microbes are intrinsically linked. This study focuses on discerning microbiome successional patterns across all plant organs and tests for evidence of niche differentiation along temporal and spatial axes. Soybean plants were grown in an environmental chamber till seed maturation. Samples from various developmental stages (emergence, growth, flowering and maturation) and compartments (leaf, stem, root and rhizosphere) were collected. Community structure and composition were assessed with 16S rRNA gene and ITS region amplicon sequencing. Overall, the interaction between spatial and temporal dynamics modulated alpha and beta diversity patterns. Time lag analysis on measured diversity indices highlighted a strong temporal dependence of communities. Spatial and temporal interactions influenced the relative abundance of the most abundant genera, whilst random forest predictions reinforced the observed localisation patterns of abundant genera. Overall, our results show that spatial and temporal interactions tend to maintain high levels of biodiversity within the bacterial/archaeal community, whilst in fungal communities OTUs within the same genus tend to have overlapping niches.


Subject(s)
Glycine max , Microbiota , Plant Roots , RNA, Ribosomal, 16S/genetics , Rhizosphere , Soil Microbiology
3.
Microbiol Res ; 223-225: 58-62, 2019.
Article in English | MEDLINE | ID: mdl-31178052

ABSTRACT

Climate change is predicted to have adverse impacts on terrestrial ecosystems and uncertainties exist on how these systems will respond. Terrestrial plant ecosystems can be divided by how they fix atmospheric carbon- C3, C4 and CAM photosynthesis pathways. However, as for now, no clear answers could be given regarding the future global repartition of the C3, C4 and CAM plants. As seeds are the reproductive and dispersal unit of the plants and endophytes play a central role in their preservation; here it is suggested that a better knowledge regarding the seeds endophytic community is needed when studying the future repartition of C3, C4 and CAM plant seeds. Bacterial endophyte communities inhabiting seeds belonging to C3, C4 and CAM annual plants were analysed by culture-dependent methods and 16S rRNA gene sequencing. Results indicated there were differences in the relative abundance of bacterial phyla within and across all photosynthetic pathways. Indicating some level of niche partitioning, and each of the three photosynthetic pathways could be characterized by a specific endophytic composition of Firmicutes, corresponding to the adaptation capacity of each group. We successfully identified resistant species of endophytes in the Firmicutes phylum of C4 and CAM plant seeds. Those bacteria are known for being involved in thermal regulation and plant protection through enzymes and antibiotic synthesis and match the strong adaptation capacity of C4 and CAM plants. Overall, this study suggests that there is a plant-mediated selection of the seed microbiome and these symbionts could potentially confer additional benefits to the seed.


Subject(s)
Endophytes/physiology , Photosynthesis , Seeds/metabolism , Seeds/microbiology , Acclimatization , Bacteria/classification , Bacteria/genetics , Colony Count, Microbial , Endophytes/classification , Endophytes/genetics , Firmicutes , Israel , Microbiota , RNA, Ribosomal, 16S/genetics
4.
Sci Rep ; 9(1): 6570, 2019 04 25.
Article in English | MEDLINE | ID: mdl-31024040

ABSTRACT

Little is known of how fungal distribution ranges vary with elevation. We studied fungal diversity and community composition from 740 to 2940 m above sea level on Mt. Norikura, Japan, sequencing the ITS2 region. There was a clear trend, repeated across each of the fungal phyla (Basidiomycota, Ascomycota, Zygomycota, Chytridomycota and Glomeromycota), and across the whole fungal community combined, towards an increased elevational range of higher elevation OTUs, conforming to the elevational Rapoport pattern. It appears that fungi from higher elevation environments are more generalized ecologically, at least in terms of climate-related gradients. These findings add to the picture from latitudinal studies of fungal ranges, which also suggest that the classic Rapoport Rule (broader ranges at higher latitudes) applies on a geographical scale. However, there was no mid-elevation maximum in diversity in any of the phyla studied, and different diversity trends for the different phyla, when different diversity indices were used. In terms of functional guilds, on Norikura there were trends towards increased saprotrophism (Zygomycota), symbiotrophism (Basidiomycota), symbiotrophism and saprotrophism (Ascomycota) and pathotrophism (Chytridiomycota) with elevation. The causes of each of these trends require further investigation from an ecological and evolutionary viewpoint.


Subject(s)
Fungi/classification , Fungi/genetics , Ascomycota/classification , Ascomycota/genetics , Basidiomycota/classification , Basidiomycota/genetics , Biodiversity , DNA, Fungal/genetics , Environmental Microbiology , Glomeromycota/classification , Glomeromycota/genetics , Japan , Mycobiome/genetics , Mycobiome/physiology , Mycorrhizae/classification , Mycorrhizae/genetics , Phylogeny , Polymerase Chain Reaction
5.
FEMS Microbiol Ecol ; 95(3)2019 03 01.
Article in English | MEDLINE | ID: mdl-30371768

ABSTRACT

There is considerable interest in the factors which may explain variation in microbial community assembly processes. In this study, we investigated bacterial community assembly, phylogenetic diversity and the relative role of deterministic and stochastic processes along environmental gradients on Mt. Norikura, Japan. DNA extracted from soil samples collected at a range of elevations was PCR-amplified targeting the V3 and V4 regions of the bacterial 16S rRNA gene, and sequenced using Illumina MiSeq. We hypothesized that elevation would be a strong predictor of phylogenetic community assembly, with communities being more phylogenetically clustered towards higher elevations, due to more extreme physiological conditions. We also hypothesized a greater role of stochasticity at the highest elevations, due to more frequent soil disturbance. Contrary to our hypotheses, we found that the strength of phylogenetic clustering and the role of stochasticity were strongly related to soil pH, with phylogenetic clustering and deterministic processes being strongest at lower soil pH values. Moreover, there was no trend towards stronger influence of phylogenetic clustering and stochasticity in the upper elevations of Mt. Norikura. These results reveal an overwhelming influence of soil pH on phylogenetic community assembly of soil bacteria, even when a range of other environmental gradients are present.


Subject(s)
Bacteria/classification , Microbiota/genetics , Phylogeny , Soil Microbiology , Soil/chemistry , Altitude , Bacteria/genetics , Bacteria/isolation & purification , Hydrogen-Ion Concentration , Japan , RNA, Ribosomal, 16S/genetics , Stochastic Processes
6.
Sci Rep ; 7(1): 3028, 2017 06 08.
Article in English | MEDLINE | ID: mdl-28596521

ABSTRACT

Little is known about how nematode ecology differs across elevational gradients. We investigated the soil nematode community along a ~2,200 m elevational range on Mt. Norikura, Japan, by sequencing the 18S rRNA gene. As with many other groups of organisms, nematode diversity showed a high correlation with elevation, and a maximum in mid-elevations. While elevation itself, in the context of the mid domain effect, could predict the observed unimodal pattern of soil nematode communities along the elevational gradient, mean annual temperature and soil total nitrogen concentration were the best predictors of diversity. We also found nematode community composition showed strong elevational zonation, indicating that a high degree of ecological specialization that may exist in nematodes in relation to elevation-related environmental gradients and certain nematode OTUs had ranges extending across all elevations, and these generalized OTUs made up a greater proportion of the community at high elevations - such that high elevation nematode OTUs had broader elevational ranges on average, providing an example consistent to Rapoport's elevational hypothesis. This study reveals the potential for using sequencing methods to investigate elevational gradients of small soil organisms, providing a method for rapid investigation of patterns without specialized knowledge in taxonomic identification.


Subject(s)
Biodiversity , Ecosystem , Nematoda/classification , Nematoda/genetics , Soil/parasitology , Animals , Environment , Japan , RNA, Ribosomal, 18S/genetics
7.
Microb Ecol ; 74(1): 168-176, 2017 07.
Article in English | MEDLINE | ID: mdl-28074247

ABSTRACT

The soil microbiome is important for the functioning of terrestrial ecosystems. However, the impacts of climate on taxonomic and functional diversity of soil microbiome are not well understood. A precipitation gradient along regional scale transects may offer a model setting for understanding the effect of climate on the composition and function of the soil microbiome. Here, we compared taxonomic and functional attributes of soil microorganisms in arid, semiarid, Mediterranean, and humid Mediterranean climatic conditions of Israel using shotgun metagenomic sequencing. We hypothesized that there would be a distinct taxonomic and functional soil community for each precipitation zone, with arid environments having lower taxonomic and functional diversity, greater relative abundance of stress response and sporulation-related genes, and lower relative abundance of genes related to nutrient cycling and degradation of complex organic compounds. As hypothesized, our results showed a distinct taxonomic and functional community in each precipitation zone, revealing differences in soil taxonomic and functional selection in the different climates. Although the taxonomic diversity remained similar across all sites, the functional diversity was-as hypothesized-lower in the arid environments, suggesting that functionality is more constrained in "extreme" environments. Also, with increasing aridity, we found a significant increase in genes related to dormancy/sporulation and a decrease in those related to nutrient cycling (genes related to nitrogen, potassium, and sulfur metabolism), respectively. However, relative abundance of genes related to stress response were lower in arid soils. Overall, these results indicate that climatic conditions play an important role in shaping taxonomic and functional attributes of soil microbiome. These findings have important implications for understanding the impacts of climate change (e.g., precipitation change) on structure and function of the soil microbiome.


Subject(s)
Ecosystem , Microbiota , Soil Microbiology , Climate Change , Israel , Soil , Water
8.
Sci Rep ; 6: 26360, 2016 05 31.
Article in English | MEDLINE | ID: mdl-27240660

ABSTRACT

Directional replacement and directional non-replacement models are two alternative paradigms for community development in primary successional environments. The first model emphasizes turnover in species between early and late successional niches. The second emphasizes accumulation of additional diversity over time. To test whether the development of soil fungal communities in the foreland of an Arctic glacier conforms to either of these models, we collected samples from the Midtre Lovénbreen Glacier, Svalbard, along a soil successional series spanning >80 years. Soil DNA was extracted, and fungal ITS1 region was amplified and sequenced on an Illumina Miseq. There was a progressive change in community composition in the soil fungal community, with greatest fungal OTU richness in the Mid Stage (50-80 years). A nestedness analysis showed that the Early Stage (20-50 years) and the Late Stage (>80 years) fungal communities were nested within the Mid Stage communities. These results imply that fungal community development in this glacier succession follows a directional replacement model. Soil development processes may initially be important in facilitating arrival of additional fungal species, to give a mid-successional diversity maximum that contains both early- and late-successional fungi. Competition may then decrease the overall diversity due to the loss of early successional species.

SELECTION OF CITATIONS
SEARCH DETAIL
...