Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Cell Rep ; 43(2): 113715, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38306273

ABSTRACT

The zona fasciculata (zF) in the adrenal cortex contributes to multiple physiological actions through glucocorticoid synthesis. The size, proliferation, and glucocorticoid synthesis characteristics are all female biased, and sexual dimorphism is established by androgen. In this study, transcriptomes were obtained to unveil the sex differentiation mechanism. Interestingly, both the amount of mRNA and the expressions of nearly all genes were higher in females. The expression of Nr5a1, which is essential for steroidogenic cell differentiation, was also female biased. Whole-genome studies demonstrated that NR5A1 regulates nearly all gene expression directly or indirectly. This suggests that androgen-induced global gene suppression is potentially mediated by NR5A1. Using Nr5a1 heterozygous mice, whose adrenal cortex is smaller than the wild type, we demonstrated that the size of skeletal muscles is possibly regulated by glucocorticoid synthesized by zF. Taken together, considering the ubiquitous presence of glucocorticoid receptors, our findings provide a pathway for sex differentiation through glucocorticoid synthesis.


Subject(s)
Adrenal Cortex , Androgens , Female , Animals , Mice , Androgens/pharmacology , Glucocorticoids , Sex Characteristics , Adrenal Cortex Hormones , Muscle, Skeletal
2.
Commun Biol ; 5(1): 1215, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36357668

ABSTRACT

In vertebrates, female receptivity to male courtship is highly dependent on ovarian secretion of estrogens and prostaglandins. We recently identified female-specific neurons in the medaka (Oryzias latipes) preoptic area that express Npba, a neuropeptide mediating female sexual receptivity, in response to ovarian estrogens. Here we show by transcriptomic analysis that these neurons express a multitude of neuropeptides, in addition to Npba, in an ovarian-dependent manner, and we thus termed them female-specific, sex steroid-responsive peptidergic (FeSP) neurons. Our results further revealed that FeSP neurons express a prostaglandin E2 receptor gene, ptger4b, in an ovarian estrogen-dependent manner. Behavioral and physiological examination of ptger4b-deficient female medaka found that they exhibit increased sexual receptivity while retaining normal ovarian function and that their FeSP neurons have reduced firing activity and impaired neuropeptide release. Collectively, this work provides evidence that prostaglandin E2/Ptger4b signaling mediates the estrogenic regulation of FeSP neuron activity and female sexual receptivity.


Subject(s)
Neuropeptides , Oryzias , Animals , Female , Male , Oryzias/genetics , Receptors, Prostaglandin E , Estrogens , Neurons , Neuropeptides/genetics , Prostaglandins
3.
Commun Biol ; 5(1): 974, 2022 09 15.
Article in English | MEDLINE | ID: mdl-36109592

ABSTRACT

Leydig cells in fetal testes play crucial roles in masculinizing fetuses through androgen production. Gene knockout studies have revealed that growth factors are implicated in fetal Leydig cell (FLC) differentiation, but little is known about the mechanisms regulating this process. We investigate this issue by characterizing FLC progenitor cells using single-cell RNA sequencing. The sequence datasets suggest that thymosin ß10 (Tmsb10) is transiently upregulated in the progenitors. While studying the function of Tmsb10, we reveal that platelet-derived growth factor (PDGF) regulates ciliogenesis through the RAS/ERK and PI3K/AKT pathways, and thereby promotes desert hedgehog (DHH)-dependent FLC differentiation. Tmsb10 expressed in the progenitor cells induces their differentiation into FLCs by suppressing the RAS/ERK pathway. Through characterizing the transiently expressed Tmsb10 in the FLC progenitors, this study unveils the molecular process of FLC differentiation and shows that it is cooperatively induced by DHH and PDGF.


Subject(s)
Androgens , MAP Kinase Signaling System , Androgens/metabolism , Fetus , Humans , Male , Phosphatidylinositol 3-Kinases/metabolism , Platelet-Derived Growth Factor/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Thymosin , ras Proteins/metabolism
4.
Commun Biol ; 4(1): 1264, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34737380

ABSTRACT

Skeletal muscles display sexually dimorphic features. Biochemically, glycolysis and fatty acid ß-oxidation occur preferentially in the muscles of males and females, respectively. However, the mechanisms of the selective utilization of these fuels remains elusive. Here, we obtain transcriptomes from quadriceps type IIB fibers of untreated, gonadectomized, and sex steroid-treated mice of both sexes. Analyses of the transcriptomes unveil two genes, Pfkfb3 (phosphofructokinase-2) and Pdk4 (pyruvate dehydrogenase kinase 4), that may function as switches between the two sexually dimorphic metabolic pathways. Interestingly, Pfkfb3 and Pdk4 show male-enriched and estradiol-enhanced expression, respectively. Moreover, the contribution of these genes to sexually dimorphic metabolism is demonstrated by knockdown studies with cultured type IIB muscle fibers. Considering that skeletal muscles as a whole are the largest energy-consuming organs, our results provide insights into energy metabolism in the two sexes, during the estrus cycle in women, and under pathological conditions involving skeletal muscles.


Subject(s)
Muscle Fibers, Fast-Twitch/metabolism , Phosphofructokinase-2/genetics , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Animals , Female , Male , Metabolic Networks and Pathways , Mice , Mice, Inbred C57BL , Phosphofructokinase-2/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Sex Factors
5.
Sci Rep ; 11(1): 18332, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34526555

ABSTRACT

Roles of interstitial tissue in morphogenesis of testicular structures remain less well understood. To analyze the roles of CD34+ cells in the reconstruction of interstitial tissue containing Leydig cells (LCs), and testicular structures, we used 3D-reaggregate culture of dissociated testicular cells from prepubertal mouse. After a week of culture, adult Leydig cells (ALCs) were preferentially incorporated within CD34+ cell-aggregates, but fetal LCs (FLCs) were not. Immunofluorescence studies showed that integrins α4, α9 and ß1, and VCAM1, one of the ligands for integrins α4ß1 and α9ß1, are expressed mainly in CD34+ cells and ALCs, but not in FLCs. Addition of function-blocking antibodies against each integrin and VCAM1 to the culture disturbed the reconstruction of testicular structures. Antibodies against α4 and ß1 integrins and VCAM1 robustly inhibited cell-to-cell adhesion between testicular cells and between CD34+ cells. Cell-adhesion assays indicated that CD34+ cells adhere to VCAM1 through the interaction with α4ß1 integrin. Live cell imaging showed that CD34+ cells adhered around ALC-aggregates. CD34+ cells on the dish moved toward the aggregates, extending filopodia, and entered into them, which was disturbed by VCAM1 antibody. These results indicate that VCAM1-α4ß1 integrin interaction plays pivotal roles in formation of testicular interstitial tissues in vitro and also in vivo.


Subject(s)
Integrin alpha4beta1/metabolism , Testis/cytology , Testis/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Animals , Antigens, CD34/metabolism , Biomarkers , Cell Adhesion/drug effects , Cell Adhesion/genetics , Cells, Cultured , Gene Expression , Integrin alpha4beta1/genetics , Leydig Cells/metabolism , Male , Mice , Organogenesis/genetics , Protein Binding , Protein Isoforms , Sexual Maturation , Spheroids, Cellular , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/pharmacology
6.
Science ; 373(6552)2021 07 16.
Article in English | MEDLINE | ID: mdl-34437124

ABSTRACT

Oocytes mature in a specialized fluid-filled sac, the ovarian follicle, which provides signals needed for meiosis and germ cell growth. Methods have been developed to generate functional oocytes from pluripotent stem cell-derived primordial germ cell-like cells (PGCLCs) when placed in culture with embryonic ovarian somatic cells. In this study, we developed culture conditions to recreate the stepwise differentiation process from pluripotent cells to fetal ovarian somatic cell-like cells (FOSLCs). When FOSLCs were aggregated with PGCLCs derived from mouse embryonic stem cells, the PGCLCs entered meiosis to generate functional oocytes capable of fertilization and development to live offspring. Generating functional mouse oocytes in a reconstituted ovarian environment provides a method for in vitro oocyte production and follicle generation for a better understanding of mammalian reproduction.


Subject(s)
Mouse Embryonic Stem Cells/physiology , Oocytes/physiology , Oogenesis , Ovarian Follicle/cytology , Animals , Cell Culture Techniques , Cell Differentiation , Embryonic Development , Female , Fertilization in Vitro , Male , Mesoderm/cytology , Mesoderm/physiology , Mice , Mice, Inbred ICR , Mouse Embryonic Stem Cells/cytology , Oocytes/cytology , Ovarian Follicle/embryology , Ovarian Follicle/physiology , RNA-Seq , Steroidogenic Factor 1/genetics , Steroidogenic Factor 1/metabolism , Transcriptome
7.
Sci Rep ; 11(1): 719, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33436964

ABSTRACT

The SRY gene induces testis development even in XX individuals. However, XX/Sry testes fail to produce mature sperm, due to the absence of Y chromosome carrying genes essential for spermatogenesis. XX/Sry Sertoli cells show abnormalities in the production of lactate and cholesterol required for germ cell development. Leydig cells are essential for male functions through testosterone production. However, whether XX/Sry adult Leydig cells (XX/Sry ALCs) function normally remains unclear. In this study, the transcriptomes from XY and XX/Sry ALCs demonstrated that immediate early and cholesterogenic gene expressions differed between these cells. Interestingly, cholesterogenic genes were upregulated in XX/Sry ALCs, although downregulated in XX/Sry Sertoli cells. Among the steroidogenic enzymes, CYP17A1 mediates steroid 17α-hydroxylation and 17,20-lyase reaction, necessary for testosterone production. In XX/Sry ALCs, the latter reaction was selectively decreased. The defects in XX/Sry ALCs, together with those in the germ and Sertoli cells, might explain the infertility of XX/Sry testes.


Subject(s)
Disorders of Sex Development/pathology , Gene Expression Regulation, Developmental , Leydig Cells/pathology , Sertoli Cells/pathology , Sex-Determining Region Y Protein/metabolism , Spermatogenesis , Testis/pathology , Animals , Disorders of Sex Development/genetics , Disorders of Sex Development/metabolism , Leydig Cells/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Sertoli Cells/metabolism , Sex Differentiation , Sex-Determining Region Y Protein/genetics , Sterol Regulatory Element Binding Protein 2/genetics , Sterol Regulatory Element Binding Protein 2/metabolism , Testis/metabolism , X Chromosome , Y Chromosome
8.
Am J Physiol Endocrinol Metab ; 320(2): E346-E358, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33225720

ABSTRACT

Age-related sarcopenia is associated with a variety of changes in skeletal muscle. These changes are interrelated with each other and associated with systemic metabolism, the details of which, however, are largely unknown. Eicosapentaenoic acid (EPA) is a promising nutrient against sarcopenia and has multifaceted effects on systemic metabolism. In this study, we hypothesized that the aging process in skeletal muscle can be intervened by the administration of EPA. Seventy-five-week-old male mice were assigned to groups fed an EPA-deprived diet (EPA-) or an EPA-enriched diet with 1 wt% EPA (EPA+) for 12 wk. Twenty-four-week-old male mice fed with normal chow were also analyzed. At baseline, the grip strength of the aging mice was lower than that of the young mice. After 12 wk, EPA+ showed similar muscle mass but increased grip strength compared with EPA-. EPA+ displayed higher insulin sensitivity than EPA-. Immunohistochemistry and gene expression analysis of myosin heavy chains (MyHCs) revealed fast-to-slow fiber type transition in aging muscle, which was partially inhibited by EPA. RNA sequencing (RNA-Seq) analysis suggested that EPA supplementation exerts pathway-specific effects in skeletal muscle including the signatures of slow-to-fast fiber type transition. In conclusion, we revealed that aging skeletal muscle in male mice shows lower grip strength and fiber type changes, both of which can be inhibited by EPA supplementation irrespective of muscle mass alteration.NEW & NOTEWORTHY This study demonstrated that the early phenotype of skeletal muscle in aging male mice is characterized by muscle weakness with fast-to-slow fiber type transition, which could be ameliorated by feeding with EPA-enriched diet. EPA induced metabolic changes such as an increase in systemic insulin sensitivity and altered muscle transcriptome in the aging mice. These changes may be related to the fiber type transition and influence muscle quality.


Subject(s)
Aging , Eicosapentaenoic Acid/pharmacology , Gene Expression Regulation/drug effects , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Slow-Twitch/metabolism , Muscle Proteins/metabolism , Transcriptome/drug effects , Animals , Insulin Resistance , Male , Mice , Mice, Inbred C57BL , Muscle Fibers, Fast-Twitch/drug effects , Muscle Fibers, Slow-Twitch/drug effects , Muscle Proteins/genetics
9.
Andrology ; 9(1): 400-406, 2021 01.
Article in English | MEDLINE | ID: mdl-32810374

ABSTRACT

BACKGROUND: Previous studies on gonadal steroidogenesis have not compared metabolic pathways between fetal and adult mouse testes to date. OBJECTIVES: To evaluate comparative metabolic signatures of testicular steroids between fetus and adult mice using gas chromatography-mass spectrometry (GC-MS)-based steroid profiling. MATERIALS AND METHODS: GC-MS with molecular-specific scan modes was optimized for selective and sensitive detection of 23 androgens, 7 estrogens, 14 progestogens, and 13 corticoids from mouse testes with a quantification limit of 0.1-5.0 ng/mL and reproducibility (coefficient of variation: 0.3%-19.9%). Based on 26 steroids quantitatively detected in testes, comparative steroid signatures were analyzed for mouse testes of 8 fetuses on embryonic day 16.5 and 8 adults on postnatal days 56-60. RESULTS: In contrast to large amounts of steroids in adult testes (P < .0002), all testicular levels per weight unit of protein were significantly increased in fetal testes (P < .002, except 6ß-hydroxytestosterone of P = .065). Both 11ß-hydroxyandrostenedione and 7α-hydroxytestosterone were only measurable in fetal testes, and metabolic ratios of testosterone to androstenediol and androstenedione were also increased in fetal testes (P < .05 for both). DISCUSSION AND CONCLUSION: Testicular steroid signatures showed that both steroidogenic Δ4 and Δ5 pathways in the production of testosterone were activated more during prenatal development. Both 7α- and 11ß-hydroxylations were predominant, while hydroxylations at C-6, C-15, and C-16 of testosterone and androstenedione were decreased in the fetus. The present GC-MS-based steroid profiling may facilitate understanding of the development of testicular steroidogenesis.


Subject(s)
Fetus/metabolism , Gonadal Steroid Hormones/biosynthesis , Testis/metabolism , Animals , Gas Chromatography-Mass Spectrometry , Male , Mice , Testis/growth & development
10.
Endocrinol Metab (Seoul) ; 35(4): 756-764, 2020 12.
Article in English | MEDLINE | ID: mdl-33397036

ABSTRACT

The agenesis of the gonads and adrenal gland in revealed by knockout mouse studies strongly suggested a crucial role for Nr5a1 (SF-1 or Ad4BP) in organ development. In relation to these striking phenotypes, NR5A1/Nr5a1 has the potential to reprogram cells to steroidogenic cells, endow pluripotency, and regulate cell proliferation. However, due to limited knowledge regarding NR5A1 target genes, the mechanism by which NR5A1/Nr5a1 regulates these fundamental processes has remained unknown. Recently, newlyestablished technologies have enabled the identification of NR5A1 target genes related to multiple metabolic processes, as well as the aforementioned biological processes. Considering that active cellular processes are expected to be accompanied by active metabolism, NR5A1 may act as a key factor for processes such as cell differentiation, proliferation, and survival by coordinating these processes with cellular metabolism. A complete and definite picture of the cellular processes coordinated by NR5A1/Nr5a1 could be depicted by accumulating evidence of the potential target genes through whole genome studies.


Subject(s)
Adrenal Glands/physiology , Glycolysis/physiology , Gonads/physiology , Steroidogenic Factor 1/metabolism , Animals , Biological Phenomena , Cell Differentiation/genetics , Cell Proliferation/genetics , Humans , Mice , Mice, Knockout , Phenotype , Steroidogenic Factor 1/genetics
11.
Biochem Biophys Res Commun ; 511(4): 916-920, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30851938

ABSTRACT

Leydig cells play a pivotal function in the synthesis of a male sex steroid, testosterone. The ability of the steroid production is dependent on the expression of the steroidogenic genes, such as HSD3B (3ß-hydroxysteroid dehydrogenase/Δ5- Δ4 isomerase). It has been established that two different types of Leydig cells, fetal Leydig cells (FLCs) and adult Leydig cells (ALCs), are developed in mammalian testes. FLCs and ALCs are characterized by different sets of marker gene expression. In the case of mouse Leydig cells, Hsd3b1 (Hsd3b type 1) is expressed both in FLCs and ALCs whereas Hsd3b6 (Hsd3b type 6) is expressed in ALCs but not in FLCs. However, because the antibodies established so far for HSD3B were unable to distinguish between the HSD3B1 and HSD3B6 isoforms, it remained unclear whether both of them are expressed in every ALC. Therefore, in the present study, we generated a rat monoclonal antibody specific for mouse HSD3B1. Intriguingly, this monoclonal antibody together with an antibody specific for HSD3B6 identified three populations of ALCs based on the expression levels of these HSD3Bs.


Subject(s)
Leydig Cells/cytology , Multienzyme Complexes/analysis , Progesterone Reductase/analysis , Steroid Isomerases/analysis , Testis/cytology , Animals , Antibodies, Monoclonal/chemistry , Cell Lineage , Fluorescent Antibody Technique , Male , Mice , Protein Isoforms/analysis , Rats , Testis/embryology
12.
Bone ; 120: 219-231, 2019 03.
Article in English | MEDLINE | ID: mdl-30389610

ABSTRACT

A set of key developmental genes is essential for skeletal growth from multipotent progenitor cells at weaning. Polycomb group proteins, which regulate such genes contributes to the cell lineage commitment and subsequent differentiation via epigenetic chromatin modification and remodeling. However, it is unclear which cell lineage and gene sets are targeted by polycomb proteins during skeletal growth. We now report that mice deficient in a polycomb group gene Cbx2cterm/cterm exhibited skeletal hypoplasia in the tibia, femur, and cranium. Long bone cavities in these mice contained fewer multipotent mesenchymal stromal cells. RNA-sequencing of bone marrow cells showed downregulation and upregulation of osteoblastic and adipogenic genes, respectively. Furthermore, the expression levels of genes specifically expressed in B-cell precursors were decreased. Forced expression of Cbx2 in Cbx2cterm/cterm bone marrow stromal cell recovered fibroblastic colony formation and suppressed adipogenic differentiation. Collectively, our results suggest that Cbx2 controls the maintenance and adipogenic differentiation of mesenchymal stromal cells in the bone marrow.


Subject(s)
Adipogenesis , Bone and Bones/cytology , Osteoblasts/cytology , Osteoblasts/metabolism , Polycomb Repressive Complex 1/genetics , Animals , Animals, Newborn , Femur/abnormalities , Gene Expression Regulation , Growth Plate/abnormalities , Mesenchymal Stem Cells/metabolism , Mice, Inbred C57BL , Polycomb Repressive Complex 1/metabolism , Tibia/abnormalities
13.
Commun Biol ; 1: 18, 2018.
Article in English | MEDLINE | ID: mdl-30271905

ABSTRACT

Housekeeping metabolic pathways such as glycolysis are active in all cell types. In addition, many types of cells are equipped with cell-specific metabolic pathways. To properly perform their functions, housekeeping and cell-specific metabolic pathways must function cooperatively. However, the regulatory mechanisms that couple metabolic pathways remain largely unknown. Recently, we showed that the steroidogenic cell-specific nuclear receptor Ad4BP/SF-1, which regulates steroidogenic genes, also regulates housekeeping glycolytic genes. Here, we identify cholesterogenic genes as the targets of Ad4BP/SF-1. Further, we reveal that Ad4BP/SF-1 regulates Hummr, a candidate mediator of cholesterol transport from endoplasmic reticula to mitochondria. Given that cholesterol is the starting material for steroidogenesis and is synthesized from acetyl-CoA, which partly originates from glucose, our results suggest that multiple biological processes involved in synthesizing steroid hormones are governed by Ad4BP/SF-1. To our knowledge, this study provides the first example where housekeeping and cell-specific metabolism are coordinated at the transcriptional level.

14.
Ann Endocrinol (Paris) ; 79(3): 95-97, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29673697

ABSTRACT

The adrenocortical gland undergoes structural and functional remodelling in the fetal and postnatal periods. After birth, the fetal zone of the gland undergoes rapid involution in favor of the definitive cortex, which reaches maturity with the emergence of the zona reticularis(zR) at the adrenarche. The mechanisms underlying the adrenarche, the process leading to pre-puberty elevation of plasma androgens in higher primates, remain unknown, largely due to lack of any experimental model. By following up fetal and definitive cortex cell lines in mice, we showed that activation of protein kinase A (PKA) signaling mainly impacts the adult cortex by stimulating centripetal regeneration, with differentiation and then conversion of the zona fasciculata into a functional zR. Animals developed Cushing syndrome associated with primary hyperaldosteronism, suggesting possible coexistence of these hypersecretions in certain patients. Remarkably, all of these traits were sex-dependent: testicular androgens promoted WNT signaling antagonism on PKA, slowing cortical renewal and delaying onset of Cushing syndrome and the establishment of the zR in male mice, this being corrected by orchidectomy. In conclusion, zR derives from centripetal conversion of the zona fasciculata under cellular renewal induced by PKA signaling, determining the size of the adult cortex. Finally, we demonstrated that this PKA-dependent mobilization of cortical progenitors is sexually dimorphic and could, if confirmed in humans, account for female preponderance in adrenocortical pathologies.


Subject(s)
Adrenal Cortex/embryology , Adrenal Cortex/growth & development , Mice , Models, Animal , Adrenal Glands/embryology , Adrenal Glands/growth & development , Animals , Cell Differentiation , Female , Humans , Male , Mice, Knockout , Sexual Maturation/physiology
15.
Mol Cell Endocrinol ; 468: 39-46, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29309805

ABSTRACT

Leydig cells in fetal and adult testes play pivotal roles in eliciting male characteristics by producing androgen. Although numerous studies of Leydig cells have been performed, the mechanisms for differentiation of the two cell types (fetal Leydig and adult Leydig cells), their developmental and functional relationship, and their differential characteristics remain largely unclear. Based on recent technical progress in genome-wide analysis and in vitro investigation, novel and fascinating observations concerning the issues above have been obtained. Focusing on fetal and adult Leydig cells, this review summarizes the recent progress that has advanced our understanding of the cells.


Subject(s)
Cell Differentiation , Leydig Cells/cytology , Leydig Cells/metabolism , Animals , Cellular Reprogramming/genetics , Fibroblasts/cytology , Genome , Humans , Male , Transcriptome/genetics
16.
JCI Insight ; 3(2)2018 01 25.
Article in English | MEDLINE | ID: mdl-29367455

ABSTRACT

The adrenal cortex undergoes remodeling during fetal and postnatal life. How zona reticularis emerges in the postnatal gland to support adrenarche, a process whereby higher primates increase prepubertal androgen secretion, is unknown. Using cell-fate mapping and gene deletion studies in mice, we show that activation of PKA has no effect on the fetal cortex, while it accelerates regeneration of the adult cortex, triggers zona fasciculata differentiation that is subsequently converted into a functional reticularis-like zone, and drives hypersecretion syndromes. Remarkably, PKA effects are influenced by sex. Indeed, testicular androgens increase WNT signaling that antagonizes PKA, leading to slower adrenocortical cell turnover and delayed phenotype whereas gonadectomy sensitizes males to hypercorticism and reticularis-like formation. Thus, reticularis results from ultimate centripetal conversion of adult cortex under the combined effects of PKA and cell turnover that dictate organ size. We show that PKA-induced progenitor recruitment is sexually dimorphic and may provide a paradigm for overrepresentation of women in adrenal diseases.


Subject(s)
Cyclic AMP-Dependent Protein Kinase RIalpha Subunit/metabolism , Sex Characteristics , Signal Transduction/physiology , Zona Fasciculata/metabolism , Zona Reticularis/metabolism , Adrenarche/metabolism , Age Factors , Androgens/metabolism , Animals , Cell Differentiation/physiology , Cyclic AMP-Dependent Protein Kinase RIalpha Subunit/genetics , Embryo, Mammalian , Female , Male , Mice , Mice, Knockout , Models, Animal
17.
Development ; 144(20): 3798-3807, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28893949

ABSTRACT

The nuclear receptor steroidogenic factor 1 (Sf1, Nr5a1, Ad4bp) is crucial for formation, development and function of steroidogenic tissues. A fetal adrenal enhancer (FAdE) in the Sf1 gene was previously identified to direct Sf1 expression exclusively in the fetal adrenal cortex and is bound by both Sf1 and Dax1. Here, we have examined the function of Sf1 SUMOylation and its interaction with Dax1 on FAdE function. A diffused prolonged pattern of FAdE expression and delayed regression of the postnatal fetal cortex (X-zone) were detected in both the SUMOylation-deficient-Sf12KR/2KR and Dax1 knockout mouse lines, with FAdE expression/activity retained in the postnatal 20αHSD-positive postnatal X-zone cells. In vitro studies indicated that Sf1 SUMOylation, although not directly influencing DNA binding, actually increased binding of Dax1 to Sf1 to further enhance transcriptional repression of FAdE. Taken together, these studies define a crucial repressor function of Sf1 SUMOylation and Dax1 in the physiological cessation of FAdE-mediated Sf1 expression and the resultant regression of the postnatal fetal cortex (X-zone).


Subject(s)
Adrenal Cortex/embryology , DAX-1 Orphan Nuclear Receptor/physiology , Gene Expression Regulation, Developmental , Steroidogenic Factor 1/physiology , Animals , DAX-1 Orphan Nuclear Receptor/genetics , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Processing, Post-Translational , Real-Time Polymerase Chain Reaction , Steroidogenic Factor 1/genetics , Sumoylation , Transcription, Genetic
19.
Sci Rep ; 7(1): 240, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28325912

ABSTRACT

The development and differentiation of steroidogenic organs are controlled by Ad4BP/SF-1 (adrenal 4 binding protein/steroidogenic factor 1). Besides, lysosomal activity is required for steroidogenesis and also enables adrenocortical cell to survive during stress. However, the role of lysosomal activity on steroidogenic cell growth is as yet unknown. Here, we showed that lysosomal activity maintained Ad4BP/SF-1 protein stability for proper steroidogenic cell growth. Treatment of cells with lysosomal inhibitors reduced steroidogenic cell growth in vitro. Suppression of autophagy did not affect cell growth indicating that autophagy was dispensable for steroidogenic cell growth. When lysosomal activity was inhibited, the protein stability of Ad4BP/SF-1 was reduced leading to reduced S phase entry. Interestingly, treatment of cells with lysosomal inhibitors reduced glycolytic gene expression and supplying the cells with pyruvate alleviated the growth defect. ChIP-sequence/ChIP studies indicated that Ad4BP/SF-1 binds to the upstream region of Ccne1 (cyclin E1) gene during G1/S phase. In addition, treatment of zebrafish embryo with lysosomal inhibitor reduced the levels of the interrenal (adrenal) gland markers. Thus lysosomal activity maintains steroidogenic cell growth via stabilizing Ad4BP/SF-1 protein.


Subject(s)
Cell Proliferation , Cyclin E/biosynthesis , Lysosomes/metabolism , Oncogene Proteins/biosynthesis , Steroidogenic Factor 1/metabolism , Animals , Cells, Cultured , Glycolysis , Mice , Zebrafish/embryology
20.
Sci Rep ; 7: 41912, 2017 02 02.
Article in English | MEDLINE | ID: mdl-28150810

ABSTRACT

SRY, a sex-determining gene, induces testis development in chromosomally female (XX) individuals. However, mouse XX Sertoli cells carrying Sry (XX/Sry Sertoli cells) are incapable of fully supporting germ cell development, even when the karyotype of the germ cells is XY. While it has therefore been assumed that XX/Sry Sertoli cells are not functionally equivalent to XY Sertoli cells, it has remained unclear which specific functions are affected. To elucidate the functional difference, we compared the gene expression of XY and XX/Sry Sertoli cells. Lactate and cholesterol metabolisms, essential for nursing the developing germ cells, were down-regulated in XX/Sry cells, which appears to be caused at least in part by the differential expression of histone modification enzymes SMCX/SMCY (H3K4me3 demethylase) and UTX/UTY (H3K27me3 demethylase) encoded by the sex chromosomes. We suggest that down-regulation of lactate and cholesterol metabolism that may be due to altered epigenetic modification affects the nursing functions of XX/Sry Sertoli cells.


Subject(s)
Cholesterol/metabolism , Disorders of Sex Development/metabolism , Karyotype , Lactic Acid/metabolism , Sertoli Cells/metabolism , Animals , Cells, Cultured , Disorders of Sex Development/genetics , Female , Histone Code , Histone Demethylases/genetics , Histone Demethylases/metabolism , Male , Mice , Sertoli Cells/pathology , Sex-Determining Region Y Protein/genetics , Sex-Determining Region Y Protein/metabolism , X Chromosome/genetics , Y Chromosome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...