Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(7)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38612116

ABSTRACT

Magnesium (Mg) and its alloys offer promise for aerospace, railway, and 3D technology applications, yet their inherent limitations, including inadequate strength, pose challenges. Magnesium matrix composites, particularly with metallic reinforcements like titanium (Ti) and its alloys, present a viable solution. Therefore, this study investigates the impact of Ti6Al4V reinforcement on AZ31 magnesium alloy composites produced using pulse plasma sintering (PPS). Results show enhanced microhardness of the materials due to improved densification and microstructural refinement. However, Ti6Al4V addition decreased corrosion resistance, leading to strong microgalvanic corrosion and substrate dissolution. Understanding these effects is crucial for designing Mg-based materials for industries like petrochemicals, where degradation-resistant materials are vital for high-pressure environments. This research provides valuable insights into developing Mg-Ti6Al4V composites with tailored properties for diverse industrial applications, highlighting the importance of considering corrosion behavior in material design. Further investigation is warranted to establish predictive correlations between Ti6Al4V content and corrosion rate for optimizing composite performance.

2.
Materials (Basel) ; 15(6)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35329457

ABSTRACT

Aluminium (Al) and titanium (Ti) coatings were applied on AZ91E magnesium alloy using a low-pressure warm spray (WS) method. The deposition was completed using three different nitrogen flow rates (NFR) for both coatings. NFR effects on coating microstructure and other physical properties were systematically studied. Microstructural characterization was performed using scanning electron microscopy (SEM), and the porosity was estimated using two methods-image analysis and X-ray microtomography. The coating adhesion strength, wear resistance, and hardness were examined. The protective properties of the coatings were verified via a salt spray test. Decreasing NFR during coating deposition produced more dense and compact coatings. However, these conditions increased the oxidation of the powder. Al coatings showed lower hardness and wear resistance than Ti coatings, although they are more suitable for corrosion protection due to their low porosity and high compactness.

3.
Materials (Basel) ; 14(19)2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34640260

ABSTRACT

The GeniCore Upgraded Field Assisted Sintering Technology U-FAST was applied to the sintering of a commercial Zr-based bulk metallic glass powder AMZ4. The XRD, SEM and DSC analysis of the sintered compacts showed the benefit of the U-FAST method as an enabler for the production of fully amorphous samples with 100% relative density when sintering at 420 °C/480 s (693 K/480 s) and 440 °C/ 60 s (713 K/480 s). The hardness values for fully amorphous samples, over HV1 519, surpass cast materials and 1625 MPa compressive strengths are comparable to commercial cast products. The advantage of the U-FAST technology in this work is attributed to the high heating and cooling rates inherent to ultra-short pulses, which allow to maintain metastable structures and achieve better temperature control during the process. Increasing sintering temperature and time led to the crystallization of the materials. The geometry and material of the dies and punch determine the thermal inertia and pressure distribution inside the compacts, thus affecting the properties of the near net shape NNS compacts made using the U-FAST device.

4.
Materials (Basel) ; 14(10)2021 May 13.
Article in English | MEDLINE | ID: mdl-34068424

ABSTRACT

A new powder production method has been developed to speed up the search for novel alloys for additive manufacturing. The technique involves an ultrasonically agitated cold crucible installed at the top of a 20 kHz ultrasonic sonotrode. The material is melted with an electric arc and undergoes pulverization with standing wave vibrations. Several different alloys in various forms, including noble and metallic glass alloys, were chosen to test the process. The atomized particles showed exceptional sphericity, while powder output suitable for additive manufacturing reached up to 60%. The AMZ4 metallic glass powder remained amorphous below the 50 µm fraction, while tungsten addition led to crystallization in each fraction. Minor contamination and high Mn and Zn evaporation, especially in the finest particles, was observed in atomized powders. The innovative ultrasonic atomization method appears as a promising tool for material scientists to develop powders with tailored chemical composition, size and structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...