Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 652: 123855, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38280497

ABSTRACT

Tioconazole is an effective antifungal agent with very low solubility in aqueous media, which limits its bioavailability and efficacy. Aiming to overcome the drug limitations by improving the solubility of this active pharmaceutical ingredient, solution precipitation techniques were employed to prepare four new crystalline salts, namely the mesylate, tosylate, maleate (1:1), and fumarate (1:1) hemihydrate. The thermal stabilities, dissolution properties, and structural characteristics of the solids were determined, and the study was extended to compare their properties with the already-known oxalate salt. The structural characterization of the new phases was carried out using a multi-method approach, which included thermal (differential scanning calorimetry and thermogravimetry), diffractometric (powder X-ray diffraction), and spectroscopic (near-infrared and mid-infrared) methodologies. The determination of the melting point of the salts confirmed the findings made by thermal methods. Functional characteristics of the salts, involving their intrinsic dissolution rates were also determined. It was found that the salts exhibited improved thermal stability and that the nature of the counterion modulated their dissolution characteristics. The salts displayed better intrinsic dissolution rates than the free base, to the point of being "highly soluble" according to the Biopharmaceutical Classification System. At pH 4.3, the sulfonic acid derivatives exhibited better dissolution rates than their carboxylic acid-derived counterparts, greatly improved regarding bare tioconazole. The results suggest that the salts have great potential to be used as replacements for the free base; in principle, careful salt selection may help to fulfill each solubility need for the different scenarios where the drug may be used.


Subject(s)
Imidazoles , Salts , Salts/chemistry , X-Ray Diffraction , Oxalates , Solubility , Calorimetry, Differential Scanning
2.
Int J Pharm ; 637: 122869, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-36948477

ABSTRACT

Tioconazole is an effective antifungal agent, which has a very low solubility in aqueous media, that limits its bioavailability and efficacy. In an effort to overcome the drug limitations by improving its solubility, the hydrochloride salt was prepared in methanolic 1 M HCl and obtained as the hemihydrate, as demonstrated by elemental analysis. Single crystals were grown by slow evaporation from an aqueous 1 M HCl solution and their structure was determined using single-crystal X-ray diffraction at 302 K. The structures resulting from dehydration and further rehydration were also assessed, at 333 and 283 K, respectively. The morphology of the crystal, which exhibited birefringence under polarized light, was verified by hot stage microscopy. The solid was characterized by additional means, including thermal analysis (melting point, differential scanning calorimetry and thermogravimetry), spectroscopic methods (mid infrared, near infrared, 1H, 13C and 15N nuclear magnetic resonance in solution, as well as 13C and 15N solid state with spinning at the magic angle) and X-ray diffraction techniques. Functional evaluation tests, including the intrinsic dissolution rate and the dissolution of powders were also performed. In the intrinsic dissolution rate test, the salt proved to dissolve over 2000 times faster than tioconazole. The results suggest that the new salt has physicochemical and performance properties which may support its use as a replacement of the free base in certain applications, especially where improved dissolution rate, solubility or bioavailability of the drug would be desired.


Subject(s)
Antifungal Agents , Sodium Chloride , X-Ray Diffraction , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Calorimetry, Differential Scanning , Water/chemistry , Solubility , Spectroscopy, Fourier Transform Infrared/methods
3.
J Pharm Sci ; 112(6): 1523-1538, 2023 06.
Article in English | MEDLINE | ID: mdl-36822273

ABSTRACT

Nifurtimox is a nitroheterocyclic drug employed for treatment of trypanosomiases (Chagas disease and West African sleeping sickness); its use for certain cancers has also been assessed. Despite having been in the market for over 50 years, knowledge of nifurtimox is still fragmentary and incomplete. Relevant aspects of the chemistry and biology of nifurtimox are reviewed to summarize the current knowledge of this drug. These comprise its chemical synthesis and the preparation of some analogues, as well as its chemical degradation. Selected physical data and physicochemical properties are also listed, along with different approaches toward the analytical characterization of the drug, including electrochemical (polarography, cyclic voltammetry), spectroscopic (ultraviolet-visible, nuclear magnetic resonance, electron spin resonance), and single crystal X-ray diffractometry. The array of polarographic, ultraviolet-visible spectroscopic, and chromatographic methods available for the analytical determination of nifurtimox (in bulk drug, pharmaceutical formulations, and biological samples), are also presented and discussed, along with chiral chromatographic and electrophoretic alternatives for the separation of the enantiomers of the drug. Aspects of the drug likeliness of nifurtimox, its classification in the Biopharmaceutical Classification System, and available pharmaceutical formulations are detailed, whereas pharmacological, chemical, and biological aspects of its metabolism and disposition are discussed.


Subject(s)
Chagas Disease , Pharmacy , Humans , Nifurtimox/chemistry , Nifurtimox/pharmacology , Nifurtimox/therapeutic use , Chagas Disease/drug therapy , Pharmaceutical Preparations
4.
Eur J Pharm Biopharm ; 184: 25-35, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36681284

ABSTRACT

Nifurtimox (NFX) is a nitrofuran derivative used to treat Chagas disease, a neglected disease caused by the protozoan Trypanosoma cruzi. The drug is very sparingly soluble in aqueous media and no other solid phases of NFX have been reported to date. The preparation of the amorphous mode of NFX is reported, as well as its characterization by hot stage microscopy, thermal (differential scanning calorimetry and thermogravimetric analysis), spectroscopic (solid state nuclear magnetic resonance, mid-infrared, and near-infrared), diffractometric and functional (powder dissolution rate) means. The stability of the new phase was investigated. This was characterized using thermal, spectroscopic, and diffractometric methods, finding out its spontaneous reversion to the crystalline state, as sign of instability. In addition, the amorphous material proved to be sensitive to temperature, pressure, and mechanical stress, all of which accelerated phase conversion. However, it was able to remain stable in a model polymeric amorphous solid dispersion with PEG 4000 for more than one month. An approach for monitoring the conversion of the amorphous phase to its crystalline counterpart under thermal stress by chemometric analysis of mid-infrared spectra at different temperatures is also disclosed.


Subject(s)
Nifurtimox , Drug Stability , Crystallization , Calorimetry, Differential Scanning , Temperature , Solubility , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 265: 120354, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34520896

ABSTRACT

Albendazole is a benzimidazole-type active pharmaceutical ingredient, and one of the most effective broad-spectrum anthelminthic agents. The drug has two solid-state forms (ALB I and ALB II) which are desmotropes; both of them seem to be currently marketed. However, using the wrong crystalline solid form for formulation may have an undesired impact on the physicochemical and/or bioavailability properties of the drug product. In order to develop new, simple, and less expensive alternatives toward the determination of the level of albendazole ALB I in its mixtures with ALB II, both desmotropes were prepared, and properly characterized by spectroscopic [solid-state nuclear magnetic resonance and near infrared (NIR)] and diffractometric (powder X-ray diffraction) methods. Then, the NIR and attenuated total reflectance-mid infrared (ATR-MIR) spectra of both forms were conveniently pre-treated and employed for the development and optimization of partial least squares (PLS)-potentiated quantification models (NIR/PLS and ATR-MIR/PLS). The latter were also subjected to validation (accuracy, precision, limits of detection and quantification, etc.) and further used to assess the level of the unwanted ALB II form in the bulk drug. The NIR/PLS method displayed the most satisfactory characteristics, including a limit of quantitation interval of 3.6 ± 1 %w/w; it outperformed both, the ATR-MIR/PLS counterpart (limit of quantitation interval of 14.0 ± 3.4 %w/w) and a previously published and more demanding Raman/PLS alternative.


Subject(s)
Albendazole , Least-Squares Analysis , Magnetic Resonance Spectroscopy , Powders , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...