Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 188: 109778, 2020 09.
Article in English | MEDLINE | ID: mdl-32574852

ABSTRACT

It is known that, for marine coastal ecosystems, pollution and global warming are among the most threatening factors. Among emerging pollutants, nanoparticles (NPs) deserve particular attention as their possible adverse effects are significantly influenced by environmental factors such as salinity, pH and temperature, as well as by their ability to interact with other contaminants. In this framework, the present study aimed to evaluate the potential interactions between CeO2 NPs and the toxic classic metal mercury (Hg), under current and warming conditions. The marine bivalve Mytilus galloprovincialis was used as biological model and exposed to CeO2 NPs and Hg, either alone or in combination, for 28 day at 17 °C and 22 °C. A suite of biomarkers related to energetic metabolism, oxidative stress/damage, redox balance, and neurotoxicity was applied in exposed and non-exposed (control) mussels. The Hg and Ce accumulation was also assessed. Results showed that the exposure to CeO2 NPs alone did not induce toxic effects in M. galloprovincialis. On the contrary, Hg exposure determined a significant loss of energetic metabolism and a general impairment in biochemical performances. Hg accumulation in mussels was not modified by the presence of CeO2 NPs, while the biochemical alterations induced by Hg alone were partially canceled upon co-exposure with CeO2 NPs. The temperature increase induced loss of metabolic and biochemical functions and the effects of temperature prevailed on mussels exposed to pollutants acting alone or combined.


Subject(s)
Cerium , Mercury , Mytilus , Nanoparticles , Water Pollutants, Chemical , Animals , Cerium/toxicity , Ecosystem , Mercury/toxicity , Nanoparticles/toxicity , Temperature , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
2.
Environ Pollut ; 257: 113597, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31744685

ABSTRACT

The ongoing development of nanotechnology has raised concerns regarding the potential risk of nanoparticles (NPs) to the environment, particularly aquatic ecosystems. A relevant aspect that drives NP toxicity is represented by the abiotic and biotic processes occurring in natural matrices that modify NP properties, ultimately affecting their interactions with biological targets. Therefore, the objective of this study was to perform an ecotoxicological evaluation of CeO2NPs with different surface modifications representative of NP bio-interactions with molecules naturally occurring in the water environment, to identify the role of biomolecule coatings on nanoceria toxicity to aquatic organisms. Ad hoc synthesis of CeO2NPs with different coating agents, such as Alginate and Chitosan, was performed. The ecotoxicity of the coated CeO2NPs was assessed on the marine bacteria Aliivibrio fischeri, through the Microtox® assay, and with the freshwater crustacean Daphnia magna. Daphnids at the age of 8 days were exposed for 48 h, and several toxicity endpoints were evaluated, from the molecular level to the entire organism. Specifically, we applied a suite of biomarkers of oxidative stress and neurotoxicity and assessed the effects on behaviour through the evaluation of swimming performance. The different coatings affected the hydrodynamic behaviour and colloidal stability of the CeO2NPs in exposure media. In tap water, NPs coated with Chitosan derivative were more stable, while the coating with Alginate enhanced the aggregation and sedimentation rate. The coatings also significantly influenced the toxic effects of CeO2NPs. Specifically, in D. magna the CeO2NPs coated with Alginate triggered oxidative stress, while behavioural assays showed that CeO2NPs coated with Chitosan induced hyperactivity. Our findings emphasize the role of environmental modification in determining the NP effects on aquatic organisms.


Subject(s)
Cerium/chemistry , Daphnia/drug effects , Ecotoxicology , Nanoparticles/toxicity , Water Pollutants, Chemical/toxicity , Animals , Biological Assay , Ecosystem , Fresh Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...