Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(2): e0228724, 2020.
Article in English | MEDLINE | ID: mdl-32032385

ABSTRACT

Genome-wide association studies (GWAS) is one of the most popular methods of studying the genetic control of traits. This methodology has been intensely performed on inbred genotypes to identify causal variants. Nonetheless, the lack of covariance between the phenotype of inbred lines and their offspring in cross-pollinated species (such as maize) raises questions on the applicability of these findings in a hybrid breeding context. To address this topic, we incorporated previously reported parental lines GWAS information into the prediction of a low heritability trait in hybrids. This was done by marker-assisted selection based on significant markers identified in the lines and by genomic prediction having these markers as fixed effects. Additive-dominance GWAS of hybrids, a non-conventional procedure, was also performed for comparison purposes. Our results suggest that incorporating information from parental inbred lines GWAS led to decreases in the predictive ability of hybrids. Correspondingly, inbred lines and hybrids-based GWAS yielded different results. These findings do not invalidate GWAS on inbred lines for selection purposes, but mean that it may not be directly useful for hybrid breeding.


Subject(s)
Genome-Wide Association Study , Quantitative Trait, Heritable , Zea mays/genetics , Cluster Analysis , Genome, Plant , Linkage Disequilibrium , Phenotype , Plant Breeding , Principal Component Analysis
2.
PLoS One ; 14(9): e0222788, 2019.
Article in English | MEDLINE | ID: mdl-31536609

ABSTRACT

Maize genotypes can show different responsiveness to inoculation with Azospirillum brasilense and an intriguing issue is which genes of the plant are involved in the recognition and growth promotion by these Plant Growth-Promoting Bacteria (PGPB). We conducted Genome-Wide Association Studies (GWAS) using additive and heterozygous (dis)advantage models to find candidate genes for root and shoot traits under nitrogen (N) stress and N stress plus A. brasilense. A total of 52,215 Single Nucleotide Polymorphism (SNP) markers were used for GWAS analyses. For the six root traits with significant inoculation effect, the GWAS analyses revealed 25 significant SNPs for the N stress plus A. brasilense treatment, in which only two were overlapped with the 22 found for N stress only. Most were found by the heterozygous (dis)advantage model and were more related to exclusive gene ontology terms. Interestingly, the candidate genes around the significant SNPs found for the maize-A. brasilense association were involved in different functions previously described for PGPB in plants (e.g. signaling pathways of the plant's defense system and phytohormone biosynthesis). Our findings are a benchmark in the understanding of the genetic variation among maize hybrids for the association with A. brasilense and reveal the potential for further enhancement of maize through this association.


Subject(s)
Genes, Plant/genetics , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide , Zea mays/genetics , Azospirillum brasilense/physiology , Genotype , Heterozygote , Host-Pathogen Interactions/genetics , Hybridization, Genetic , Nitrogen/metabolism , Phenotype , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Roots/genetics , Plant Roots/microbiology , Stress, Physiological , Zea mays/microbiology
3.
Theor Appl Genet ; 132(1): 273-288, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30382311

ABSTRACT

KEY MESSAGE: Our study indicates that copy variants may play an essential role in the phenotypic variation of complex traits in maize hybrids. Moreover, predicting hybrid phenotypes by combining additive-dominance effects with copy variants has the potential to be a viable predictive model. Non-additive effects resulting from the actions of multiple loci may influence trait variation in single-cross hybrids. In addition, complementation of allelic variation could be a valuable contributor to hybrid genetic variation, especially when crossing inbred lines with higher contents of copy gains. With this in mind, we aimed (1) to study the association between copy number variation (CNV) and hybrid phenotype, and (2) to compare the predictive ability (PA) of additive and additive-dominance genomic best linear unbiased prediction model when combined with the effects of CNV in two datasets of maize hybrids (USP and HELIX). In the USP dataset, we observed a significant negative phenotypic correlation of low magnitude between copy number loss and plant height, revealing a tendency that more copy losses lead to lower plants. In the same set, when CNV was combined with the additive plus dominance effects, the PA significantly increased only for plant height under low nitrogen. In this case, CNV effects explicitly capture relatedness between individuals and add extra information to the model. In the HELIX dataset, we observed a pronounced difference in PA between additive (0.50) and additive-dominance (0.71) models for predicting grain yield, suggesting a significant contribution of dominance. We conclude that copy variants may play an essential role in the phenotypic variation of complex traits in maize hybrids, although the inclusion of CNVs into datasets does not return significant gains concerning PA.


Subject(s)
DNA Copy Number Variations , Hybridization, Genetic , Plant Breeding , Zea mays/genetics , Alleles , Genome, Plant , Genotype , Models, Genetic , Phenotype
4.
BMC Plant Biol ; 16(1): 149, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27364638

ABSTRACT

BACKGROUND: Seasonal variation is presumed to play an important role in the regulation of tree growth, especially for Eucalyptus grandis, a fast-growing tree. This variation may induce changes in the whole tree at transcriptional, protein and metabolite levels. Bark represents an important group of tissues that protect trees from desiccation and pathogen attack, and it has been identified as potential feedstock for lignocellulosic derived biofuels. Despite the growing interest, little is known about the molecular mechanisms that regulates bark metabolism, particularly in tropical countries. RESULTS: In this study we report the changes observed in the primary metabolism of E. grandis bark during two contrasting seasons in Brazil, summer (wet) and winter (dry), through the combination of transcripts (RT-qPCR), proteome (2-DE gels) and metabolome (GC-MS) analysis, in an integrated manner. Twenty-four genes, involved in carbon metabolism, were analyzed in the two seasons. Eleven were up-regulated in summer, three were up-regulated in winter and ten did not show statistical differences in the expression pattern. The proteomic analysis using 2-DE gels showed 77 proteins expressing differences in abundance, with 38 spots up-regulated in summer and 37 in winter. Different metabolites significantly accumulated during winter. CONCLUSIONS: This study revealed a metabolic reconfiguration in the primary metabolism of E. grandis bark, triggered by seasonal variation. Transcripts and protein data suggests that during winter carbohydrate formation seems to be favored by tree metabolism. Glucose, fructose and sucrose accumulated at significant levels during the winter.


Subject(s)
Carbon/metabolism , Eucalyptus/genetics , Plant Proteins/genetics , Proteome/metabolism , Ecdysteroids , Electrophoresis, Gel, Two-Dimensional , Eucalyptus/chemistry , Eucalyptus/metabolism , Gene Expression Regulation, Plant , Plant Bark/genetics , Plant Bark/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Proteome/chemistry , Proteome/genetics , Proteomics , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...