Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Sustain Energy Fuels ; 7(14): 3384-3394, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37441238

ABSTRACT

Cobalt(ii) complexes featuring hexadentate amino-pyridyl ligands have been recently discovered as highly active catalysts for the Hydrogen Evolution Reaction (HER), whose high performance arises from the possibility of assisting proton transfer processes via intramolecular routes involving detached pyridine units. With the aim of gaining insights into such catalytic routes, three new proton reduction catalysts based on amino-polypyridyl ligands are reported, focusing on substitution of the pyridine ortho-position. Specifically, a carboxylate (C2) and two hydroxyl substituted pyridyl moieties (C3, C4) are introduced with the aim of promoting intramolecular proton transfer which possibly enhances the efficiency of the catalysts. Foot-of-the-wave and catalytic Tafel plot analyses have been utilized to benchmark the catalytic performances under electrochemical conditions in acetonitrile using trifluoroacetic acid as the proton source. In this respect, the cobalt complex C3 turns out to be the fastest catalyst in the series, with a maximum turnover frequency (TOF) of 1.6 (±0.5) × 105 s-1, but at the expense of large overpotentials. Mechanistic investigations by means of Density Functional Theory (DFT) suggest a typical ECEC mechanism (i.e. a sequence of reduction - E - and protonation - C - events) for all the catalysts, as previously envisioned for the parent unsubstituted complex C1. Interestingly, in the case of complex C2, the catalytic route is triggered by initial protonation of the carboxylate group resulting in a less common (C)ECEC mechanism. The pivotal role of the hexadentate chelating ligand in providing internal proton relays to assist hydrogen elimination is further confirmed within this novel class of molecular catalysts, thus highlighting the relevance of a flexible polypyridine ligand in the design of efficient cobalt complexes for the HER. Photochemical studies in aqueous solution using [Ru(bpy)3]2+ (where bpy = 2,2'-bipyridine) as the sensitizer and ascorbate as the sacrificial electron donor support the superior performance of C3.

2.
Chem Sci ; 13(13): 3857-3863, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35432907

ABSTRACT

The covalent assembly between a cobalt diimine-dioxime complex and a fullerenic moiety results in enhanced catalytic properties in terms of overpotential requirement for H2 evolution. The interaction between the fullerene moiety and PCBM heterojunction further allows for the easy integration of the cobalt diimine-dioxime - fullerene catalyst with a poly-3-hexylthiophene (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) bulk heterojunction, yielding hybrid photoelectrodes for H2 evolution from near-neutral aqueous solutions.

3.
J Am Chem Soc ; 144(8): 3614-3625, 2022 03 02.
Article in English | MEDLINE | ID: mdl-35184564

ABSTRACT

With the price-competitiveness of solar and wind power, hydrogen technologies may be game changers for a cleaner, defossilized, and sustainable energy future. H2 can indeed be produced in electrolyzers from water, stored for long periods, and converted back into power, on demand, in fuel cells. The feasibility of the latter process critically depends on the discovery of cheap and efficient catalysts able to replace platinum group metals at the anode and cathode of fuel cells. Bioinspiration can be key for designing such alternative catalysts. Here we show that a novel class of iron-based catalysts inspired from the active site of [FeFe]-hydrogenase behave as unprecedented bidirectional electrocatalysts for interconverting H2 and protons efficiently under near-neutral aqueous conditions. Such bioinspired catalysts have been implemented at the anode of a functional membrane-less H2/O2 fuel cell device.


Subject(s)
Hydrogenase , Iron-Sulfur Proteins , Catalysis , Catalytic Domain , Hydrogen/chemistry , Hydrogenase/chemistry , Iron-Sulfur Proteins/chemistry , Protons , Water
4.
J Am Chem Soc ; 143(43): 18150-18158, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34677065

ABSTRACT

Integration of efficient platinum-group-metal (PGM)-free catalysts to fuel cells and electrolyzers is a prerequisite to their large-scale deployment. Here, we describe the development of a molecular-based anode for the hydrogen oxidation reaction (HOR) through noncovalent integration of a DuBois type Ni bioinspired molecular catalyst at the surface of a carbon nanotube modified gas diffusion layer. This mild immobilization strategy enabled us to gain high control over the loading in catalytic sites. Additionally, through the adjustment of the hydration level of the active layer, a new record current density of 214 ± 20 mA cm-2 could be reached at 0.4 V vs RHE with the PGM-free anode, at 25 °C. Near industrially relevant current densities were obtained at 55 °C with 150 ± 20 and 395 ± 30 mA cm-2 at 0.1 and 0.4 V overpotentials, respectively. These results further demonstrate the relevance of such molecular approaches for the development of electrocatalytic platforms for energy conversion.

5.
J Am Chem Soc ; 141(20): 8244-8253, 2019 05 22.
Article in English | MEDLINE | ID: mdl-31026148

ABSTRACT

In the oxygen reduction reaction (ORR) domain, the investigation of new homogeneous catalysts is a crucial step toward the full comprehension of the key structural and/or electronic factors that control catalytic efficiency and selectivity. Herein, we report a unique non-heme diiron complex that can act as a homogeneous ORR catalyst in acetonitrile solution. This iron(II) thiolate dinuclear complex, [FeII2(LS)(LSH)] ([Fe2SH]+) (LS2- = 2,2'-(2,2'-bipyridine-6,6'-diyl)bis(1,1-diphenylethanethiolate)) contains a thiol group in the metal coordination sphere. [Fe2SH]+ is an efficient ORR catalyst both in the presence of a one-electron reducing agent and under electrochemically assisted conditions. However, its selectivity is dependent on the electron delivery pathway; in particular, the process is selective for H2O2 production under chemical conditions (up to ∼95%), whereas H2O is the main product during electrocatalysis (less than ∼10% H2O2). Based on computational work alongside the experimental data, a mechanistic proposal is discussed that rationalizes the selective and tunable reduction of dioxygen.

6.
Angew Chem Int Ed Engl ; 57(49): 16001-16004, 2018 12 03.
Article in English | MEDLINE | ID: mdl-30307683

ABSTRACT

[NiFe]-hydrogenase enzymes are efficient catalysts for H2 evolution but their synthetic models have not been reported to be active under aqueous conditions so far. Here we show that a close model of the [NiFe]-hydrogenase active site can work as a very active and stable heterogeneous H2 evolution catalyst under mildly acidic aqueous conditions. Entry in catalysis is a NiI FeII complex, with electronic structure analogous to the Ni-L state of the enzyme, corroborating the mechanism modification recently proposed for [NiFe]-hydrogenases.


Subject(s)
Hydrogen/metabolism , Hydrogenase/metabolism , Models, Biological , Biocatalysis , Catalytic Domain , Density Functional Theory , Hydrogen/chemistry , Hydrogen-Ion Concentration , Hydrogenase/chemistry , Molecular Conformation , Solutions , Water/chemistry , Water/metabolism
7.
Nanoscale ; 7(41): 17274-7, 2015 Nov 07.
Article in English | MEDLINE | ID: mdl-26439282

ABSTRACT

A carbon nanotube-gold nanohybrid was used as catalyst for the reduction of molecular oxygen in acidic and alkaline media, the relevant cathode reaction in fuel cells. In alkaline medium, the nanohybrid exhibits excellent activity with a dominant 4e(-) reduction of O2 and low overpotential requirement compared to previously reported nano-gold materials. This property is linked to its capability to efficiently mediate HO2(-) dismutation.

8.
J Phys Chem B ; 119(43): 13707-13, 2015 Oct 29.
Article in English | MEDLINE | ID: mdl-25993343

ABSTRACT

We report here that a bioinspired cobalt diimine-dioxime molecular catalyst for hydrogen evolution immobilized onto carbon nanotube electrodes proves tolerant toward oxygen. The cobalt complex catalyzes O2 reduction with an onset potential of +0.55 V vs RHE. In this process, a mixture of water and hydrogen peroxide is produced in a 3:1 ratio. Our study evidences that such side-reductions have little impact on effectiveness of proton reduction by the grafted molecular catalyst which still displays good activity for H2 evolution in the presence of O2. The presence of O2 in the media is not detrimental toward H2 evolution under the conditions used, which simulate turn-on conditions of a water-splitting device.

9.
Phys Chem Chem Phys ; 17(6): 4047-53, 2015 Feb 14.
Article in English | MEDLINE | ID: mdl-25406596

ABSTRACT

Reduced size and direct electrochemical H2 compression are two distinct advantages of electrolyzers based on the acid-polymer electrolyte membrane technology over those relying on alkaline electrolytes. However, recourse to catalysts based on the scarce platinum-group-metals has hitherto been the price to pay. While the transition metal sulfides and nitrides of group VI have recently shown interesting activities for H2 evolution, the remaining activity gap with Pt needs to be reduced. Platinum owes its high activity to its optimum metal-hydrogen bond strength for H2 evolution, which is a proven descriptor of the activity on single-component catalysts. Here, we unravel a major synergetic effect between gold and molybdenum nitride which multiplies the hydrogen evolution activity ca. 100 times over that of either gold or molybdenum nitride. This two-phase catalytic material, featuring both strong and weak metal-hydrogen bonds, overcomes the limitations described by Sabatier's principle for single-component catalysts.

10.
J Am Chem Soc ; 136(17): 6348-54, 2014 Apr 30.
Article in English | MEDLINE | ID: mdl-24717022

ABSTRACT

The development of innovative techniques for the functionalization of carbon nanotubes that preserve their exceptional quality, while robustly enriching their properties, is a central issue for their integration in applications. In this work, we describe the formation of a covalent network of porphyrins around MWNT surfaces. The approach is based on the adsorption of cobalt(II) meso-tetraethynylporphyrins on the nanotube sidewalls followed by the dimerization of the triple bonds via Hay-coupling; during the reaction, the nanotube acts as a template for the formation of the polymeric layer. The material shows an increased stability resulting from the cooperative effect of the multiple π-stacking interactions between the porphyrins and the nanotube and by the covalent links between the porphyrins. The nanotube hybrids were fully characterized and tested as the supported catalyst for the oxygen reduction reaction (ORR) in a series of electrochemical measurements under acidic conditions. Compared to similar systems in which monomeric porphyrins are simply physisorbed, MWNT-CoP hybrids showed a higher ORR activity associated with a number of exchanged electrons close to four, corresponding to the complete reduction of oxygen into water.

12.
Chem Commun (Camb) ; 48(38): 4627-9, 2012 May 14.
Article in English | MEDLINE | ID: mdl-22473416

ABSTRACT

The relationship between the morphology of polypyrrole and their electrocatalytic performances towards the oxygen reduction reaction (ORR) in alkaline media is described; annealed polypyrrole with granular- and tubules-like morphology exhibited different catalytic efficiencies.

13.
ChemSusChem ; 5(4): 647-51, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22389330

ABSTRACT

High-performance oxygen reduction reaction (ORR) catalysts based on metal-free nitrogen-containing precursors and carbon nanotubes are reported. The investigated systems allow the evaluation of the effect of nitrogen-containing groups towards ORR and the results show that the catalysts are compatible with the conditions encountered in alkaline fuel cells, exhibiting good catalytic activity and stability compared with conventional Pt/C electrocatalyst.


Subject(s)
Nanotubes, Carbon/chemistry , Nitrogen/chemistry , Oxygen/chemistry , Tetrazoles/chemistry , Triazoles/chemistry , Catalysis , Electrochemistry , Hydrogen-Ion Concentration , Oxidation-Reduction
14.
Phys Chem Chem Phys ; 13(48): 21600-7, 2011 Dec 28.
Article in English | MEDLINE | ID: mdl-22068682

ABSTRACT

One of the major limitations yet to the global implementation of polymer electrolyte membrane fuel cells (PEMFCs) is the cathode catalyst. The development of efficient platinum-free catalysts is the key issue to solve the problem of slow kinetics of the oxygen reduction reaction (ORR) and high cost. We report a promising catalyst for ORR prepared through the annealing treatment under inert conditions of the cobalt-benzotriazole (Co-BTA) complex supported on carbon nanotubes (CNTs). The N-rich benzotriazole precursor was chosen based on its ability to complex Co(II) ions and generate under annealing highly reactive radicals able to tune the physicochemical properties of CNTs. X-Ray photoelectron spectroscopy (XPS) was used to follow the surface structure changes and highlight the active electrocatalytic sites towards the ORR. To achieve further evaluation of the catalysts in acidic medium, voltamperometry, rotating disk electrode (RDE), rotating ring-disk electrode (RRDE) and half-cell measurements were performed. The resulting catalysts (Co/N/CNTs) all show catalytic activity towards the ORR, the most active one resulting from annealing at 700 °C. The overall electron transfer number for the catalyzed ORR was determined to be ∼3.7 with no change upon the catalyst loading, suggesting that the ORR was dominated by a 4e(-) transfer process. The results indicate a promising alternative cathode catalyst for ORR in fuel cells, although its performance is still lower (overpotential around 110 mV evaluated by RDE and RRDE) than the reference Pt/C catalyst.

SELECTION OF CITATIONS
SEARCH DETAIL
...