Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Heliyon ; 10(6): e27731, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38509883

ABSTRACT

Malignant mesothelioma (MM) is a very aggressive neoplasia with a short life expectancy and limited therapeutic options. Thus, the identification of novel molecular targets is a matter of great urgency. Kelch-like (KLHL) proteins play an important role in a number of physiological and pathological cell-regulatory processes. Among this family, the function of KLHL14 is still very poorly characterized. KLHL14 was originally identified as a gene involved in regulating the epithelial-mesenchymal transition (EMT) process. Here, we demonstrate that KLHL14 not only prevents EMT but also plays an anti-oncogenic role in MM. Indeed, KLHL14 depletion enhanced proliferation, motility, invasion and colony formation in MM cells. Importantly, we also demonstrated that KLHL14 mechanism of action is dependent on Transforming Growth Factor ß (TGF-ß). In fact, TGF-ß promotes de novo synthesis, increases protein stability and induces nuclear-cytoplasmic shuttling of KLHL14. Collectively, this research is an important step further to decipher KLHLs mechanism of action and further contributes to the understanding of the molecular mechanisms regulating MM.

2.
Comput Struct Biotechnol J ; 23: 1154-1168, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38510977

ABSTRACT

In recent years, the role of bioinformatics and computational biology together with omics techniques and transcriptomics has gained tremendous importance in biomedicine and healthcare, particularly for the identification of biomarkers for precision medicine and drug discovery. Differential gene expression (DGE) analysis is one of the most used techniques for RNA-sequencing (RNA-seq) data analysis. This tool, which is typically used in various RNA-seq data processing applications, allows the identification of differentially expressed genes across two or more sample sets. Functional enrichment analyses can then be performed to annotate and contextualize the resulting gene lists. These studies provide valuable information about disease-causing biological processes and can help in identifying molecular targets for novel therapies. This review focuses on differential gene expression (DGE) analysis pipelines and bioinformatic techniques commonly used to identify specific biomarkers and discuss the advantages and disadvantages of these techniques.

3.
Cancers (Basel) ; 16(2)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38254773

ABSTRACT

Colony-stimulating factor 1 receptor (CFS-1R) is a myeloid receptor with a crucial role in monocyte survival and differentiation. Its overexpression is associated with aggressive tumors characterized by an immunosuppressive microenvironment and poor prognosis. CSF-1R ligands, IL-34 and M-CSF, are produced by many cells in the tumor microenvironment (TME), suggesting a key role for the receptor in the crosstalk between tumor, immune and stromal cells in the TME. Recently, CSF-1R expression was reported in the cell membrane of the cancer cells of different solid tumors, capturing the interest of various research groups interested in investigating the role of this receptor in non-myeloid cells. This review summarizes the current data available on the expression and activity of CSF-1R in different tumor types. Notably, CSF-1R+ cancer cells have been shown to produce CSF-1R ligands, indicating that CSF-1R signaling is positively regulated in an autocrine manner in cancer cells. Recent research demonstrated that CSF-1R signaling enhances cell transformation by supporting tumor cell proliferation, invasion, stemness and drug resistance. In addition, this review covers recent therapeutic strategies, including monoclonal antibodies and small-molecule inhibitors, targeting the CSF-1R and designed to block the pro-oncogenic role of CSF-1R in cancer cells.

4.
Int J Mol Sci ; 24(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38003535

ABSTRACT

Sarcomas are heterogeneous bone and soft tissue cancers representing the second most common tumor type in children and adolescents. Histology and genetic profiling discovered more than 100 subtypes, which are characterized by peculiar molecular vulnerabilities. However, limited therapeutic options exist beyond standard therapy and clinical benefits from targeted therapies were observed only in a minority of patients with sarcomas. The rarity of these tumors, paucity of actionable mutations, and limitations in the chemical composition of current targeted therapies hindered the use of these approaches in sarcomas. Targeted protein degradation (TPD) is an innovative pharmacological modality to directly alter protein abundance with promising clinical potential in cancer, even for undruggable proteins. TPD is based on the use of small molecules called degraders or proteolysis-targeting chimeras (PROTACs), which trigger ubiquitin-dependent degradation of protein of interest. In this review, we will discuss major features of PROTAC and PROTAC-derived genetic systems for target validation and cancer treatment and focus on the potential of these approaches to overcome major issues connected to targeted therapies in sarcomas, including drug resistance, target specificity, and undruggable targets. A deeper understanding of these strategies might provide new fuel to drive molecular and personalized medicine to sarcomas.


Subject(s)
Neoplasms, Second Primary , Sarcoma , Soft Tissue Neoplasms , Adolescent , Child , Humans , Proteolysis , Sarcoma/drug therapy , Sarcoma/genetics , Precision Medicine , Genetic Profile , Ubiquitin-Protein Ligases , Proteasome Endopeptidase Complex
5.
Cancer Genomics Proteomics ; 20(6suppl): 637-645, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38035703

ABSTRACT

Prostate cancer (PCa) is the second most common cancer in humans. Peptides have recently been used as targeted therapeutics in cancers, due to their extensive multi-functional applications. Two hypothalamic peptides, orexins A (OXA) and B (OXB) and their specific receptors, orexin receptor 1 (OX1R) and 2 (OX2R), orchestrate several biological processes in the central nervous system and peripheral organs. However, in addition to their role in physiological responses, orexins are involved in numerous inflammatory and/or neoplastic pathologies. The presence and expression of orexins in different cancer models, including prostate cancer, and their role in inducing pro- or anti-apoptotic responses in tumor cell lines, suggest that the orexinergic system might have potential therapeutic action or function as a diagnostic marker in PCa. In addition to the traditional animal models for studying human PCa, the canine model might also serve as an additional tool, due to its clinical similarities with human prostate cancer.


Subject(s)
Prostatic Neoplasms , Male , Animals , Dogs , Humans , Orexins/metabolism , Orexin Receptors/metabolism , Prostatic Neoplasms/drug therapy
6.
Am J Physiol Cell Physiol ; 325(2): C391-C405, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37399497

ABSTRACT

Progranulin is a growth factor with pro-tumorigenic activity. We recently demonstrated that in mesothelioma, progranulin regulates cell migration, invasion, adhesion, and in vivo tumor formation by modulating a complex signaling network involving multiple receptor tyrosine kinase (RTK)s. Progranulin biological activity relies on epidermal growth factor receptor (EGFR) and receptor-like tyrosine kinase (RYK), a co-receptor of the Wnt signaling pathway, which are both required for progranulin-induced downstream signaling. However, the molecular mechanism regulating the functional interaction among progranulin, EGFR, and RYK are not known. In this study, we demonstrated that progranulin directly interacted with RYK by specific enzyme-linked immunosorbent assay (ELISA) (KD = 0.67). Using immunofluorescence and proximity ligation assay, we further discovered that progranulin and RYK colocalized in mesothelioma cells in distinct vesicular compartments. Notably, progranulin-dependent downstream signaling was sensitive to endocytosis inhibitors, suggesting that it could depend on RYK or EGFR internalization. We discovered that progranulin promoted RYK ubiquitination and endocytosis preferentially through caveolin-1-enriched pathways, and modulated RYK stability. Interestingly, we also showed that in mesothelioma cells, RYK complexes with the EGFR, contributing to the regulation of RYK stability. Collectively, our results suggest a complex regulation of RYK trafficking/activity in mesothelioma cells, a process that is concurrently regulated by exogenous soluble progranulin and EGFR. NEW & NOTEWORTHY The growth factor progranulin has pro-tumorigenic activity. In mesothelioma, progranulin signaling is mediated by EGFR and RYK, a co-receptor of the Wnt signaling. However, the molecular mechanisms regulating progranulin action are not well defined. Here, we demonstrated that progranulin binds RYK and regulates its ubiquitination, internalization, and trafficking. We also uncovered a role for EGFR in modulating RYK stability. Overall, these results highlight a complex modulation of RYK activity by progranulin and EGFR in mesothelioma.


Subject(s)
Mesothelioma , Receptor Protein-Tyrosine Kinases , Humans , Progranulins , Receptor Protein-Tyrosine Kinases/metabolism , ErbB Receptors/metabolism , Wnt Signaling Pathway/physiology , Cell Movement , Intercellular Signaling Peptides and Proteins
7.
Cancers (Basel) ; 15(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36980592

ABSTRACT

Progranulin is a pleiotropic growth factor with important physiological roles in embryogenesis and maintenance of adult tissue homeostasis. While-progranulin deficiency is associated with a broad range of pathological conditions affecting the brain, such as frontotemporal dementia and neuronal ceroid lipofuscinosis, progranulin upregulation characterizes many tumors, including brain tumors, multiple myeloma, leiomyosarcoma, mesothelioma and epithelial cancers such as ovarian, liver, breast, bladder, adrenal, prostate and kidney carcinomas. The increase of progranulin levels in tumors might have diagnostic and prognostic significance. In cancer, progranulin has a pro-tumorigenic role by promoting cancer cell proliferation, migration, invasiveness, anchorage-independent growth and resistance to chemotherapy. In addition, progranulin regulates the tumor microenvironment, affects the function of cancer-associated fibroblasts, and modulates tumor immune surveillance. However, the molecular mechanisms of progranulin oncogenic function are not fully elucidated. In bladder cancer, progranulin action relies on the activation of its functional signaling receptor EphA2. Notably, more recent data suggest that progranulin can also modulate a functional crosstalk between multiple receptor-tyrosine kinases, demonstrating a more complex and context-dependent role of progranulin in cancer. Here, we will review what is currently known about the function of progranulin in tumors, with a focus on its molecular mechanisms of action and regulation.

8.
J Clin Med ; 12(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36902562

ABSTRACT

BACKGROUND: Female sex in patients treated by radical cystectomy (RC) is associated with more advanced stage and worse survival. However, studies supporting these findings mostly or exclusively relied on urothelial carcinoma of the urinary bladder (UCUB) and did not address non-urothelial variant-histology bladder cancer (VH BCa). We hypothesized that female sex is associated with a more advanced stage and worse survival in VH BCa, similarly to that of UCUB. MATERIALS AND METHODS: Within the SEER database (2004-2016), we identified patients aged ≥18 years, with histologically confirmed VH BCa, and treated with comprehensive RC. Logistic regression addressing the non-organ-confined (NOC) stage, as well as cumulative incidence plots and competing risks regression addressing CSM for females vs. males, were fitted. All analyses were repeated in stage-specific and VH-specific subgroups. RESULTS: Overall, 1623 VH BCa patients treated with RC were identified. Of those, 38% were female. Adenocarcinoma (n = 331, 33%), neuroendocrine tumor (n = 304, 18%), and other VH (n = 317, 37%) were less frequent in females but not squamous cell carcinoma (n = 671, 51%). Across all VH subgroups, female patients had higher NOC rates than males did (68 vs. 58%, p < 0.001), and female sex was an independent predictor of NOC VH BCa (OR = 1.55, p = 0.0001). Overall, five-year cancer-specific mortality (CSM) were 43% for females vs. 34% for males (HR = 1.25, p = 0.02). CONCLUSION: In VH BC patients treated with comprehensive RC, female sex is associated with a more advanced stage. Independently of stage, female sex also predisposes to higher CSM.

9.
Biomedicines ; 11(1)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36672737

ABSTRACT

Insulin-like growth factor 2 (IGF2) is upregulated in both childhood and adult malignancies. Its overexpression is associated with resistance to chemotherapy and worse prognosis. However, our understanding of its physiological and pathological role is lagging behind what we know about IGF1. Dysregulation of the expression and function of IGF2 receptors, insulin receptor isoform A (IR-A), insulin growth factor receptor 1 (IGF1R), and their downstream signaling effectors drive cancer initiation and progression. The involvement of IGF2 in carcinogenesis depends on its ability to link high energy intake, increase cell proliferation, and suppress apoptosis to cancer risk, and this is likely the key mechanism bridging insulin resistance to cancer. New aspects are emerging regarding the role of IGF2 in promoting cancer metastasis by promoting evasion from immune destruction. This review provides a perspective on IGF2 and an update on recent research findings. Specifically, we focus on studies providing compelling evidence that IGF2 is not only a major factor in primary tumor development, but it also plays a crucial role in cancer spread, immune evasion, and resistance to therapies. Further studies are needed in order to find new therapeutic approaches to target IGF2 action.

10.
Int J Mol Sci ; 24(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36674602

ABSTRACT

Atherosclerosis is a multifactorial inflammatory pathology that involves metabolic processes. Improvements in therapy have drastically reduced the prognosis of cardiovascular disease. Nevertheless, a significant residual risk is still relevant, and is related to unmet therapeutic targets. Endothelial dysfunction and lipid infiltration are the primary causes of atherosclerotic plaque progression. In this contest, mitochondrial dysfunction can affect arterial wall cells, in particular macrophages, smooth muscle cells, lymphocytes, and endothelial cells, causing an increase in reactive oxygen species (ROS), leading to oxidative stress, chronic inflammation, and intracellular lipid deposition. The detection and characterization of mitochondrial DNA (mtDNA) is crucial for assessing mitochondrial defects and should be considered the goal for new future therapeutic interventions. In this review, we will focus on a new idea, based on the analysis of data from many research groups, namely the link between mitochondrial impairment and endothelial dysfunction and, in particular, its effect on atherosclerosis and aging. Therefore, we discuss known and novel mitochondria-targeting therapies in the contest of atherosclerosis.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Humans , Endothelial Cells/metabolism , Atherosclerosis/metabolism , Plaque, Atherosclerotic/metabolism , Mitochondria/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Lipids
11.
Front Cell Dev Biol ; 10: 1038841, 2022.
Article in English | MEDLINE | ID: mdl-36467417

ABSTRACT

Epithelial-mesenchymal plasticity (EMP) refers to the ability of cells to dynamically interconvert between epithelial (E) and mesenchymal (M) phenotypes, thus generating an array of hybrid E/M intermediates with mixed E and M features. Recent findings have demonstrated how these hybrid E/M rather than fully M cells play key roles in most of physiological and pathological processes involving EMT. To this regard, the onset of hybrid E/M state coincides with the highest stemness gene expression and is involved in differentiation of either normal and cancer stem cells. Moreover, hybrid E/M cells are responsible for wound healing and create a favorable immunosuppressive environment for tissue regeneration. Nevertheless, hybrid state is responsible of metastatic process and of the increasing of survival, apoptosis and therapy resistance in cancer cells. The present review aims to describe the main features and the emerging concepts regulating EMP and the formation of E/M hybrid intermediates by describing differences and similarities between cancer and normal hybrid stem cells. In particular, the comprehension of hybrid E/M cells biology will surely advance our understanding of their features and how they could be exploited to improve tissue regeneration and repair.

12.
J Exp Clin Cancer Res ; 41(1): 333, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36471440

ABSTRACT

BACKGROUND: Mesothelioma is an aggressive disease with limited therapeutic options. The growth factor progranulin plays a critical role in several cancer models, where it regulates tumor initiation and progression. Recent data from our laboratories have demonstrated that progranulin and its receptor, EphA2, constitute an oncogenic pathway in bladder cancer by promoting motility, invasion and in vivo tumor formation. Progranulin and EphA2 are expressed in mesothelioma cells but their mechanisms of action are not well defined. In addition, there are no data establishing whether the progranulin/EphA2 axis is tumorigenic for mesothelioma cells. METHODS: The expression of progranulin in various mesothelioma cell lines derived from all major mesothelioma subtypes was examined by western blots on cell lysates, conditioned media and ELISA assays. The biological roles of progranulin, EphA2, EGFR, RYK and FAK were assessed in vitro by immunoblots, human phospho-RTK antibody arrays, pharmacological (specific inhibitors) and genetic (siRNAs, shRNAs, CRISPR/Cas9) approaches, motility, invasion and adhesion assays. In vivo tumorigenesis was determined by xenograft models. Focal adhesion turnover was evaluated biochemically using focal adhesion assembly/disassembly assays and immunofluorescence analysis with focal adhesion-specific markers. RESULTS: In the present study we show that progranulin is upregulated in various mesothelioma cell lines covering all mesothelioma subtypes and is an important regulator of motility, invasion, adhesion and in vivo tumor formation. However, our results indicate that EphA2 is not the major functional receptor for progranulin in mesothelioma cells, where progranulin activates a complex signaling network including EGFR and RYK. We further characterized progranulin mechanisms of action and demonstrated that progranulin, by modulating FAK activity, regulates the kinetic of focal adhesion disassembly, a critical step for cell motility. CONCLUSION: Collectively, our results highlight the complexity of progranulin oncogenic signaling in mesothelioma, where progranulin modulate functional cross-talks between multiple RTKs, thereby suggesting the need for combinatorial therapeutic approaches to improve treatments of this aggressive disease.


Subject(s)
Mesothelioma , Progranulins , Humans , Cell Line, Tumor , Cell Movement , ErbB Receptors/genetics , Mesothelioma/metabolism , Mesothelioma/pathology , Progranulins/genetics , Progranulins/metabolism , RNA, Small Interfering/genetics
13.
Pathogens ; 11(11)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36365007

ABSTRACT

SARS-CoV-2 is a new coronavirus that has affected the world since 2019. Interstitial pneumonia is the most common clinical presentation, but additional symptoms have been reported, including neurological manifestations. Severe forms of infection, especially in elderly patients, present as an excessive inflammatory response called "cytokine storm", which can lead to acute respiratory distress syndrome (ARDS), multiorgan failure and death. Little is known about the relationship between symptoms and clinical outcomes or the characteristics of virus-host interactions. The aim of this narrative review is to highlight possible links between neurological involvement and respiratory damage mediated by pathological inflammatory pathways in SARS-CoV-2 infection. We will focus on neuro-immune interactions and age-related immunity decline and discuss some pathological mechanisms that contribute to negative outcomes in COVID-19 patients. Furthermore, we will describe available therapeutic strategies and their effects on COVID-19 neurological symptoms.

14.
J Clin Med ; 11(18)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36142956

ABSTRACT

Background: Existing data on metastatic upper tract urothelial carcinoma (mUTUC) are limited. In this study, we investigated the prognostic value of site-specific metastases in patients with mUTUC and its association with survival outcomes. Methods: We retrospectively collected data from the Surveillance, Epidemiology and End Results (SEER) database between 2004 and 2016. Kaplan−Meier analysis with a log-rank test was used for survival comparisons. Multivariate Cox regression was employed to predict overall survival (OS) and cancer-specific survival (CSS). Results: 633 patients were selected in this study cohort. The median follow-up was 6 months (IQR 2−13) and a total of 584 (92.3%) deaths were recorded. Within the population presenting with a single metastatic organ site, the most common metastatic sites were distant lymph nodes, accounting for 36%, followed by lung, bone and liver metastases, accounting for 26%, 22.8% and 16.2%, respectively. In patients with a single metastatic organ site, the Kaplan−Meier curves showed significantly worse OS for patients with liver metastases vs. patients presenting with metastases in a distant lymph node (p < 0.001), bone (p = 0.023) or lung (p = 0.026). When analyzing CSS, statistically significant differences were detectable only between patients presenting with liver metastases vs. distant lymph node metastases (p < 0.001). Multivariate analyses showed that the presence of liver (OS: HR = 1.732, 95% CI = 1.234−2.430, p < 0.001; CSS: HR = 1.531, 95% CI = 1.062−2.207, p = 0.022) or multiple metastatic organ sites (OS: HR = 1.425, 95% CI = 1.159−1.753, p < 0.001; CSS: HR = 1.417, 95% CI = 1.141−1.760, p = 0.002) was an independent predictor of poor survival. Additionally, survival benefits were found in patients undergoing radical nephroureterectomy (RNU) (OS: HR = 0.675, 95% CI = 0.514−0.886, p = 0.005; CSS: HR = 0.671, 95% CI = 0.505−0.891, p = 0.006) and chemotherapy (CHT) (OS: HR = 0.405, 95% CI = 0.313−0.523, p < 0.001; CSS: HR = 0.435, 95% CI = 0.333−0.570, p < 0.001). Conclusions: A distant lymph node was the most common site of single-organ metastases for mUTUC. Patients with liver metastases and patients with multiple organ metastases exhibited worse survival outcomes. Lastly, CHT administration and RNU were revealed to be predictors of better survival outcomes in the mUTUC cohort.

15.
Biomolecules ; 12(5)2022 04 20.
Article in English | MEDLINE | ID: mdl-35625539

ABSTRACT

This biomolecules Special Issue includes original research articles and reviews focusing on recent advances in the biology of the insulin-like growth factor (IGF) system [...].


Subject(s)
Diabetes Mellitus , Neoplasms , Humans , Insulin , Insulin-Like Growth Factor I/metabolism , Obesity
16.
Cancer Cell Int ; 21(1): 703, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-34952583

ABSTRACT

The p53 protein is a transcription factor known as the "guardian of the genome" because of its critical function in preserving genomic integrity. The TP53 gene is mutated in approximately half of all human malignancies, including those of the breast, colon, lung, liver, prostate, bladder, and skin. When DNA damage occurs, the TP53 gene on human chromosome 17 stops the cell cycle. If p53 protein is mutated, the cell cycle is unrestricted and the damaged DNA is replicated, resulting in uncontrolled cell proliferation and cancer tumours. Tumor-associated p53 mutations are usually associated with phenotypes distinct from those caused by the loss of the tumor-suppressing function exerted by wild-type p53protein. Many of these mutant p53 proteins have oncogenic characteristics, and therefore modulate the ability of cancer cells to proliferate, escape apoptosis, invade and metastasize. Because p53 deficiency is so common in human cancer, this protein is an excellent option for cancer treatment. In this review, we will discuss some of the molecular pathways by which mutant p53 proteins might perform their oncogenic activities, as well as prospective treatment methods based on restoring tumor suppressive p53 functions.

17.
Cells ; 10(11)2021 11 12.
Article in English | MEDLINE | ID: mdl-34831367

ABSTRACT

The insulin receptor isoform A (IR-A) plays an increasingly recognized role in fetal growth and tumor biology in response to circulating insulin and/or locally produced IGF2. This role seems not to be shared by the IR isoform B (IR-B). We aimed to dissect the specific impact of IR isoforms in modulating insulin signaling in triple negative breast cancer (TNBC) cells. We generated murine 4T1 TNBC cells deleted from the endogenous insulin receptor (INSR) gene and expressing comparable levels of either human IR-A or IR-B. We then measured IR isoform-specific in vitro and in vivo biological effects and transcriptome in response to insulin. Overall, the IR-A was more potent than the IR-B in mediating cell migration, invasion, and in vivo tumor growth. Transcriptome analysis showed that approximately 89% of insulin-stimulated transcripts depended solely on the expression of the specific isoform. Notably, in cells overexpressing IR-A, insulin strongly induced genes involved in tumor progression and immune evasion including chemokines and genes related to innate immunity. Conversely, in IR-B overexpressing cells, insulin predominantly induced the expression of genes primarily involved in the regulation of metabolic pathways and, to a lesser extent, tumor growth and angiogenesis.


Subject(s)
Carcinogenesis/metabolism , Carcinogenesis/pathology , Receptor, Insulin/metabolism , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Animals , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Databases, Genetic , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Neoplasm Invasiveness , Neoplasm Metastasis , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA-Seq , Receptor, Insulin/genetics , Survival Analysis , Transcriptome/genetics , Triple Negative Breast Neoplasms/blood supply , Triple Negative Breast Neoplasms/genetics , Zebrafish
18.
Cancers (Basel) ; 13(19)2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34638509

ABSTRACT

The members of the retinoblastoma (RB) protein family, RB1/p105, retinoblastoma-like (RBL)1/p107 and RBL2/p130 are critical modulators of the cell cycle and their dysregulation has been associated with tumor initiation and progression. The activity of RB proteins is regulated by numerous pathways including oncogenic signaling, but the molecular mechanisms of these functional interactions are not fully defined. We previously demonstrated that RBL2/p130 is a direct target of AKT and it is a key mediator of the apoptotic process induced by AKT inhibition. Here we demonstrated that RBL1/p107 levels are only minorly modulated by the AKT signaling pathway. In contrast, we discovered that RBL1/p107 levels are regulated by multiple pathways linked directly or indirectly to Ca2+-dependent signaling. Inhibition of the multifunctional calcium/calmodulin-dependent kinases (CaMKs) significantly reduced RBL1/p107 expression levels and phosphorylation, increased RBL1/p107 nuclear localization and led to cell cycle arrest in G0/G1. Targeting the Ca2+-dependent endopeptidase calpain stabilized RBL1/p107 levels and counteracted the reduction of RBL1/p107 levels associated with CaMKs inhibition. Thus, these novel observations suggest a complex regulation of RBL1/p107 expression involving different components of signaling pathways controlled by Ca2+ levels, including CaMKs and calpain, pointing out a significant difference with the mechanisms modulating the close family member RBL2/p130.

19.
Cells ; 10(8)2021 08 13.
Article in English | MEDLINE | ID: mdl-34440844

ABSTRACT

Aberrant bioactivity of the insulin-like growth factor (IGF) system results in the development and progression of several pathologic conditions including cancer. Preclinical studies have shown promising anti-cancer therapeutic potentials for anti-IGF targeted therapies. However, a clear but limited clinical benefit was observed only in a minority of patients with sarcomas. The molecular complexity of the IGF system, which comprises multiple regulators and interactions with other cancer-related pathways, poses a major limitation in the use of anti-IGF agents and supports the need of combinatorial therapeutic strategies to better tackle this axis. In this review, we will initially highlight multiple mechanisms underlying IGF dysregulation in cancer and then focus on the impact of the IGF system and its complexity in sarcoma development and progression as well as response to anti-IGF therapies. We will also discuss the role of Ephrin receptors, Hippo pathway, BET proteins and CXCR4 signaling, as mediators of sarcoma malignancy and relevant interactors with the IGF system in tumor cells. A deeper understanding of these molecular interactions might provide the rationale for novel and more effective therapeutic combinations to treat sarcomas.


Subject(s)
Receptor, IGF Type 1/metabolism , Sarcoma/pathology , Antibodies, Monoclonal/therapeutic use , Hippo Signaling Pathway , Humans , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/metabolism , Proteins/metabolism , Receptor, IGF Type 1/antagonists & inhibitors , Receptors, CXCR4/metabolism , Receptors, Eph Family/metabolism , Sarcoma/drug therapy , Sarcoma/metabolism , Signal Transduction
20.
Biomolecules ; 11(7)2021 06 22.
Article in English | MEDLINE | ID: mdl-34206590

ABSTRACT

The insulin receptor isoform A (IR-A), a dual receptor for insulin and IGF2, plays a role in breast cancer (BC) progression and metabolic reprogramming. Notably, discoidin domain receptor 1 (DDR1), a collagen receptor often dysregulated in cancer, is involved in a functional crosstalk and feed forward loop with both the IR-A and the insulin like growth factor receptor 1 (IGF1R). Here, we aimed at investigating whether DDR1 might affect BC cell metabolism by modulating the IGF1R and/or the IR. To this aim, we generated MCF7 BC cells engineered to stably overexpress either IGF2 (MCF7/IGF2) or the IR-A (MCF7/IR-A). In both cell models, we observed that DDR1 silencing induced a significant decrease of total ATP production, particularly affecting the rate of mitochondrial ATP production. We also observed the downregulation of key molecules implicated in both glycolysis and oxidative phosphorylation. These metabolic changes were not modulated by DDR1 binding to collagen and occurred in part in the absence of IR/IGF1R phosphorylation. DDR1 silencing was ineffective in MCF7 knocked out for DDR1. Taken together, these results indicate that DDR1, acting in part independently of IR/IGF1R stimulation, might work as a novel regulator of BC metabolism and should be considered as putative target for therapy in BC.


Subject(s)
Breast Neoplasms/metabolism , Discoidin Domain Receptor 1/metabolism , Insulin-Like Growth Factor II/metabolism , Insulin/metabolism , Neoplasm Proteins/metabolism , Signal Transduction , Female , Humans , MCF-7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...