Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 10: 693, 2019.
Article in English | MEDLINE | ID: mdl-31244671

ABSTRACT

While epidemiological data support the link between reduced heart rate variability (HRV) and a multitude of pathologies, the mechanisms underlying changes in HRV and disease progression are poorly understood. Even though we have numerous rodent models of disease for mechanistic studies, not being able to reliably measure HRV in conscious, freely moving rodents has hindered our ability to extrapolate the role of HRV in the progression from normal physiology to pathology. The sheer number of heart beats per day (>800,000 in mice) makes data exclusion both time consuming and daunting. We sought to evaluate an RR interval exclusion method based on percent (%) change of adjacent RR intervals. Two approaches were evaluated: % change from "either" and "both" adjacent RR intervals. The data exclusion method based on standard deviation (SD) was also evaluated for comparison. Receiver operating characteristic (ROC) curves were generated to determine the performance of each method. Results showed that exclusion based on % change from "either" adjacent RR intervals was the most accurate method in identifying normal and abnormal RR intervals, with an overall accuracy of 0.92-0.99. As the exclusion value increased (% change or SD), the sensitivity (correctly including normal RR intervals) increased exponentially while the specificity (correctly rejecting abnormal RR intervals) decreased linearly. Compared to the SD method, the "either" approach had a steeper rise in sensitivity and a more gradual decrease in specificity. The intersection of sensitivity and specificity where the exclusion criterion had the same accuracy in identifying normal and abnormal RR intervals was 10-20% change for the "either" approach and ∼ 1 SD for the SD-based exclusion method. Graphically (tachogram and Lorenz plot), 20% change from either adjacent RR interval resembled the data after manual exclusion. Finally, overall (SDNN) and short-term (rMSSD) indices of HRV generated using 20% change from "either" adjacent RR intervals as the exclusion criterion were closer to the manual exclusion method with lower subject-to-subject variability than those generated using the 2 SD exclusion criterion. Thus, 20% change from "either" adjacent RR intervals is a good criterion for data exclusion for reliable 24-h time domain HRV analysis in rodents.

2.
J Virol ; 76(6): 2617-21, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11861827

ABSTRACT

We previously showed that the intrahepatic induction of cytokines such as alpha/beta interferon (IFN-alpha/beta) and gamma interferon (IFN-gamma) inhibits hepatitis B virus (HBV) replication noncytopathically in the livers of transgenic mice. The intracellular pathway(s) responsible for this effect is still poorly understood. To identify interferon (IFN)-inducible intracellular genes that could play a role in our system, we crossed HBV transgenic mice with mice deficient in IFN regulatory factor 1 (IRF-1), the double-stranded RNA-activated protein kinase (PKR), or RNase L (RNase L) (IRF-1(-/-), PKR(-/-), or RNase L(-/-) mice, respectively), three well-characterized IFN-inducible genes that mediate antiviral activity. We showed that unmanipulated IRF-1(-/-) or PKR(-/-) transgenic mice replicate HBV in the liver at slightly higher levels than the respective controls, suggesting that both IRF-1 and PKR individually appear to mediate signals that modulate HBV replication under basal conditions. These same animals were responsive to the antiviral effects of the IFN-alpha/beta inducer poly(I-C) or recombinant murine IFN-gamma, suggesting that under these conditions, either the IRF-1 or the PKR genes can mediate the antiviral activity of the IFNs or other IFN-inducible genes mediate the antiviral effects. Finally, RNase L(-/-) transgenic mice were undistinguishable from controls under basal conditions and after poly(I-C) or IFN-gamma administration, suggesting that RNase L does not modulate HBV replication in this model.


Subject(s)
Gene Expression Regulation, Viral , Hepatitis B virus/physiology , Hepatitis B/virology , Interferon-gamma/physiology , Virus Replication , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endoribonucleases/genetics , Endoribonucleases/metabolism , Hepatitis B virus/genetics , Interferon Regulatory Factor-1 , Interferon-gamma/pharmacology , Liver/virology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phosphoproteins/genetics , Phosphoproteins/metabolism , Poly I-C/pharmacology , Recombinant Proteins , Virus Replication/drug effects , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...