Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res Commun ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995700

ABSTRACT

Regulatory T (Treg) cells are highly enriched within many tumors and suppress immune responses to cancer. There is intense interest in reprogramming Treg cells to contribute to anti-tumor immunity. OX40 and CD137 are expressed highly on Treg cells, activated and memory T cells, and NK cells. Here, using a novel tetravalent bispecific antibody targeting mouse OX40 and CD137 (FS120m), we show that OX40/CD137 bispecific agonists induce potent anti-tumor immunity partially dependent upon IFN-γ-production by functionally reprogrammed Treg cells. Treatment of tumor-bearing animals with OX40/CD137 bispecific agonists reprograms Treg cells into both fragile Foxp3+ IFN-γ+ cells with decreased suppressive function, and lineage instable Foxp3- IFN-γ+ cells. Treg cell fragility is partially dependent upon IFN-γ signaling, whereas Treg cell instability is associated with reduced IL-2 signaling upon treatment with OX40/CD137 bispecific agonists. Importantly, conditional deletion of Ifng in Foxp3+ Treg cells and their progeny partially reverses the anti-tumor efficacy of OX40/CD137 bispecific agonist therapy, revealing that reprogramming of Treg cells into IFN-γ-producing cells contributes to the efficacy of OX40/CD137 bispecific agonists. These findings provide insights into mechanisms by which bispecific agonist therapies targeting co-stimulatory receptors highly expressed by Treg cells potentiate anti-tumor immunity in mouse models.

2.
PLoS One ; 17(10): e0276652, 2022.
Article in English | MEDLINE | ID: mdl-36288371

ABSTRACT

A great deal of understanding can be gleaned from direct observation of organismal growth, development, and behavior. However, direct observation can be time consuming and influence the organism through unintentional stimuli. Additionally, video capturing equipment can often be prohibitively expensive, difficult to modify to one's specific needs, and may come with unnecessary features. Here, we describe PiSpy, a low-cost, automated video acquisition platform that uses a Raspberry Pi computer and camera to record video or images at specified time intervals or when externally triggered. All settings and controls, such as programmable light cycling, are accessible to users with no programming experience through an easy-to-use graphical user interface. Importantly, the entire PiSpy system can be assembled for less than $100 using laser-cut and 3D-printed components. We demonstrate the broad applications and flexibility of PiSpy across a range of model and non-model organisms. Designs, instructions, and code can be accessed through an online repository, where a global community of PiSpy users can also contribute their own unique customizations and help grow the community of open-source research solutions.


Subject(s)
Biology , Diagnostic Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...