Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 283
Filter
1.
Int J Mol Sci ; 25(4)2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38396846

ABSTRACT

Vacuolar ATPases (V-ATPases), proton pumps composed of 16 subunits, are necessary for a variety of cellular functions. Subunit "a" has four isoforms, a1-a4, each with a distinct cellular location. We identified a phosphoinositide (PIP) interaction motif, KXnK(R)IK(R), conserved in all four isoforms, and hypothesize that a/PIP interactions regulate V-ATPase recruitment/retention to different organelles. Among the four isoforms, a2 is enriched on Golgi with a2 mutations in the PIP motif resulting in cutis laxa. We hypothesize that the hydrophilic N-terminal (NT) domain of a2 contains a lipid-binding domain, and mutations in this domain prevent interaction with Golgi-enriched PIPs, resulting in cutis laxa. We recreated the cutis laxa-causing mutation K237_V238del, and a double mutation in the PIP-binding motif, K237A/V238A. Circular dichroism confirmed that there were no protein structure alterations. Pull-down assays with PIP-enriched liposomes revealed that wildtype a2NT preferentially binds phosphatidylinositol 4-phosphate (PI(4)P), while mutants decreased binding to PI(4)P. In HEK293 cells, wildtype a2NT was localized to Golgi and co-purified with microsomal membranes. Mutants reduced Golgi localization and membrane association. Rapamycin depletion of PI(4)P diminished a2NT-Golgi localization. We conclude that a2NT is sufficient for Golgi retention, suggesting the lipid-binding motif is involved in V-ATPase targeting and/or retention. Mutational analyses suggest a molecular mechanism underlying how a2 mutations result in cutis laxa.


Subject(s)
Cutis Laxa , Vacuolar Proton-Translocating ATPases , Humans , Cutis Laxa/genetics , Cutis Laxa/metabolism , HEK293 Cells , Protein Isoforms/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Mutation
2.
J Endocrinol ; 258(3)2023 09 01.
Article in English | MEDLINE | ID: mdl-37578842

ABSTRACT

Bromodomain-containing protein 7 (BRD7) has emerged as a player in the regulation of glucose homeostasis. Hepatic BRD7 levels are decreased in obese mice, and the reinstatement of hepatic BRD7 in obese mice has been shown to establish euglycemia and improve glucose homeostasis. Of note, the upregulation of hepatic BRD7 levels activates the AKT cascade in response to insulin without enhancing the sensitivity of the insulin receptor (InsR)-insulin receptor substrate (IRS) axis. In this report, we provide evidence for the existence of an alternative insulin signaling pathway that operates independently of IRS proteins and demonstrate the involvement of BRD7 in this pathway. To investigate the involvement of BRD7 as a downstream component of InsR, we utilized liver-specific InsR knockout mice. Additionally, we employed liver-specific IRS1/2 knockout mice to examine the requirement of IRS1/2 for the action of BRD7. Our investigation of glucose metabolism parameters and insulin signaling unveiled the significance of InsR activation in mediating BRD7's effect on glucose homeostasis in the liver. Moreover, we identified an interaction between BRD7 and InsR. Notably, our findings indicate that IRS1/2 is not necessary for BRD7's regulation of glucose metabolism, particularly in the context of obesity. The upregulation of hepatic BRD7 significantly reduces blood glucose levels and restores glucose homeostasis in high-fat diet-challenged liver-specific IRS1/2 knockout mice. These findings highlight the presence of an alternative insulin signaling pathway that operates independently of IRS1/2 and offer novel insights into the mechanisms of a previously unknown insulin signaling in obesity.


Subject(s)
Insulin Resistance , Receptor, Insulin , Animals , Mice , Glucose/metabolism , Homeostasis/genetics , Insulin/metabolism , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , Liver/metabolism , Mice, Knockout , Mice, Obese , Obesity/genetics , Obesity/metabolism , Receptor, Insulin/metabolism , Transcription Factors/metabolism
3.
J Dev Biol ; 11(3)2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37489333

ABSTRACT

Cells in a developing animal embryo become specified by the activation of cell-type-specific gene regulatory networks. The network that specifies the gut in the nematode Caenorhabditis elegans has been the subject of study for more than two decades. In this network, the maternal factors SKN-1/Nrf and POP-1/TCF activate a zygotic GATA factor cascade consisting of the regulators MED-1,2 → END-1,3 → ELT-2,7, leading to the specification of the gut in early embryos. Paradoxically, the MED, END, and ELT-7 regulators are present only in species closely related to C. elegans, raising the question of how the gut can be specified without them. Recent work found that ELT-3, a GATA factor without an endodermal role in C. elegans, acts in a simpler ELT-3 → ELT-2 network to specify gut in more distant species. The simpler ELT-3 → ELT-2 network may thus represent an ancestral pathway. In this review, we describe the elucidation of the gut specification network in C. elegans and related species and propose a model by which the more complex network might have formed. Because the evolution of this network occurred without a change in phenotype, it is an example of the phenomenon of Developmental System Drift.

4.
Int J Mol Sci ; 24(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36902293

ABSTRACT

Vacuolar ATPases (V-ATPases) are multi-subunit ATP-dependent proton pumps necessary for cellular functions, including pH regulation and membrane fusion. The evidence suggests that the V-ATPase a-subunit's interaction with the membrane signaling lipid phosphatidylinositol (PIPs) regulates the recruitment of V-ATPase complexes to specific membranes. We generated a homology model of the N-terminal domain of the human a4 isoform (a4NT) using Phyre2.0 and propose a lipid binding domain within the distal lobe of the a4NT. We identified a basic motif, K234IKK237, critical for interaction with phosphoinositides (PIP), and found similar basic residue motifs in all four mammalian and both yeast a-isoforms. We tested PIP binding of wildtype and mutant a4NT in vitro. In protein lipid overlay assays, the double mutation K234A/K237A and the autosomal recessive distal renal tubular-causing mutation K237del reduced both PIP binding and association with liposomes enriched with PI(4,5)P2, a PIP enriched within plasma membranes. Circular dichroism spectra of the mutant protein were comparable to wildtype, indicating that mutations affected lipid binding, not protein structure. When expressed in HEK293, wildtype a4NT localized to the plasma membrane in fluorescence microscopy and co-purified with the microsomal membrane fraction in cellular fractionation experiments. a4NT mutants showed reduced membrane association and decreased plasma membrane localization. Depletion of PI(4,5)P2 by ionomycin caused reduced membrane association of the WT a4NT protein. Our data suggest that information contained within the soluble a4NT is sufficient for membrane association and that PI(4,5)P2 binding capacity is involved in a4 V-ATPase plasma membrane retention.


Subject(s)
Vacuolar Proton-Translocating ATPases , Animals , Humans , HEK293 Cells , Vacuolar Proton-Translocating ATPases/metabolism , Saccharomyces cerevisiae/metabolism , Protein Isoforms/metabolism , Cell Membrane/metabolism , Phosphatidylinositols/metabolism , Binding Sites , Mammals/metabolism
5.
Mol Metab ; 71: 101703, 2023 05.
Article in English | MEDLINE | ID: mdl-36906067

ABSTRACT

OBJECTIVE: Body weight change and obesity follow the variance of excess energy input balanced against tightly controlled EE (energy expenditure). Since insulin resistance can reduce energy storage, we investigated whether genetic disruption of hepatic insulin signaling reduced adipose mass with increased EE. METHODS: Insulin signaling was disrupted by genetic inactivation of Irs1 (Insulin receptor substrate 1) and Irs2 in hepatocytes of LDKO mice (Irs1L/L·Irs2L/L·CreAlb), creating a state of complete hepatic insulin resistance. We inactivated FoxO1 or the FoxO1-regulated hepatokine Fst (Follistatin) in the liver of LDKO mice by intercrossing LDKO mice with FoxO1L/L or FstL/L mice. We used DEXA (dual-energy X-ray absorptiometry) to assess total lean mass, fat mass and fat percentage, and metabolic cages to measure EE (energy expenditure) and estimate basal metabolic rate (BMR). High-fat diet was used to induce obesity. RESULTS: Hepatic disruption of Irs1 and Irs2 (LDKO mice) attenuated HFD (high-fat diet)-induced obesity and increased whole-body EE in a FoxO1-dependent manner. Hepatic disruption of the FoxO1-regulated hepatokine Fst normalized EE in LDKO mice and restored adipose mass during HFD consumption; moreover, hepatic Fst disruption alone increased fat mass accumulation, whereas hepatic overexpression of Fst reduced HFD-induced obesity. Excess circulating Fst in overexpressing mice neutralized Mstn (Myostatin), activating mTORC1-promoted pathways of nutrient uptake and EE in skeletal muscle. Similar to Fst overexpression, direct activation of muscle mTORC1 also reduced adipose mass. CONCLUSIONS: Thus, complete hepatic insulin resistance in LDKO mice fed a HFD revealed Fst-mediated communication between the liver and muscle, which might go unnoticed during ordinary hepatic insulin resistance as a mechanism to increase muscle EE and constrain obesity.


Subject(s)
Insulin Resistance , Mice , Animals , Insulin Resistance/physiology , Basal Metabolism , Follistatin/metabolism , Obesity/metabolism , Liver/metabolism , Insulin/metabolism , Diet, High-Fat/adverse effects
6.
MicroPubl Biol ; 20232023.
Article in English | MEDLINE | ID: mdl-36748041

ABSTRACT

The C. elegans elt-3 gene encodes a GATA transcription factor that is expressed in the hypodermis and has roles in hypodermal specification and regulation of collagen and stress response genes. The gene encodes short and long isoforms, ELT-3A and ELT-3B respectively, that differ upstream of their DNA-binding domains. Previous work showed that ELT-3A can specify hypodermal cell fates when forcibly overexpressed throughout early embryos. We recently showed that the ELT-3B orthologue from the distantly related species C. angaria can specify endodermal fates when forcibly overexpressed in C. elegans. Here, we show that C. elegans ELT-3B can also specify endoderm.

7.
Cell Metab ; 35(2): 236-252, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36754018

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is not only a consequence of insulin resistance, but it is also an important cause of insulin resistance and major non-communicable diseases (NCDs). The close relationship of NAFLD with visceral obesity obscures the role of fatty liver from visceral adiposity as the main pathomechanism of insulin resistance and NCDs. To overcome this limitation, in analogy to the concept of adipokines, in 2008 we introduced the term hepatokines to describe the role of fetuin-A in metabolism. Since then, several other hepatokines were tested for their effects on metabolism. Here we address the dysregulation of hepatokines in people with NAFLD. Then, we discuss pathophysiological mechanisms of cardiometabolic diseases specifically related to NAFLD by focusing on hepatokine-related organ crosstalk. Finally, we propose how the determination of major hepatokines and adipokines can be used for pathomechanism-based clustering of insulin resistance in NAFLD and visceral obesity to better implement precision medicine in clinical practice.


Subject(s)
Insulin Resistance , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Obesity, Abdominal , Adipokines
8.
Diabetes ; 72(3): 362-366, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36525512

ABSTRACT

The objective of this work was to investigate whether impaired insulin secretion can be restored by lifestyle intervention in specific subphenotypes of prediabetes. We assigned 1,045 participants from the Prediabetes Lifestyle Intervention Study (PLIS) to six recently established prediabetes clusters. Insulin secretion was assessed by a C-peptide-based index derived from oral glucose tolerance tests and modeled from three time points during a 1-year intervention. We also analyzed the change of glycemia, insulin sensitivity, and liver fat. All prediabetes high-risk clusters (cluster 3, 5, and 6) had improved glycemic traits during the lifestyle intervention, whereas insulin secretion only increased in clusters 3 and 5 (P < 0.001); however, high liver fat in cluster 5 was associated with a failure to improve insulin secretion (Pinteraction < 0.001). Thus, interventions to reduce liver fat have the potential to improve insulin secretion in a defined subgroup of prediabetes.


Subject(s)
Insulin Resistance , Prediabetic State , Humans , Prediabetic State/metabolism , Insulin Secretion , Blood Glucose/metabolism , Liver/metabolism , Life Style , Insulin/metabolism
9.
Cell Rep ; 41(3): 111498, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36261001

ABSTRACT

Copper deficiency has emerged to be associated with various lipid metabolism diseases, including non-alcoholic fatty liver disease (NAFLD). However, the mechanisms that dictate the association between copper deficiency and metabolic diseases remain obscure. Here, we reveal that copper restoration caused by hepatic ceruloplasmin (Cp) ablation enhances lipid catabolism by promoting the assembly of copper-load SCO1-LKB1-AMPK complex. Overnutrition-mediated Cp elevation results in hepatic copper loss, whereas Cp ablation restores copper content to the normal level without eliciting detectable hepatotoxicity and ameliorates NAFLD in mice. Mechanistically, SCO1 constitutively interacts with LKB1 even in the absence of copper, and copper-loaded SCO1 directly tethers LKB1 to AMPK, thereby activating AMPK and consequently promoting mitochondrial biogenesis and fatty acid oxidation. Therefore, this study reveals a mechanism by which copper, as a signaling molecule, improves hepatic lipid catabolism, and it indicates that targeting copper-SCO1-AMPK signaling pathway ameliorates NAFLD development by modulating AMPK activity.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Mice , AMP-Activated Protein Kinases/metabolism , Ceruloplasmin/metabolism , Copper/metabolism , Down-Regulation , Fatty Acids/metabolism , Lipid Metabolism/physiology , Lipids , Liver/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism
10.
Development ; 149(21)2022 11 01.
Article in English | MEDLINE | ID: mdl-36196618

ABSTRACT

Endoderm specification in Caenorhabditis elegans occurs through a network in which maternally provided SKN-1/Nrf, with additional input from POP-1/TCF, activates the GATA factor cascade MED-1,2→END-1,3→ELT-2,7. Orthologues of the MED, END and ELT-7 factors are found only among nematodes closely related to C. elegans, raising the question of how gut is specified in their absence in more distant species in the genus. We find that the C. angaria, C. portoensis and C. monodelphis orthologues of the GATA factor gene elt-3 are expressed in the early E lineage, just before their elt-2 orthologues. In C. angaria, Can-pop-1(RNAi), Can-elt-3(RNAi) and a Can-elt-3 null mutation result in a penetrant 'gutless' phenotype. Can-pop-1 is necessary for Can-elt-3 activation, showing that it acts upstream. Forced early E lineage expression of Can-elt-3 in C. elegans can direct the expression of a Can-elt-2 transgene and rescue an elt-7 end-1 end-3; elt-2 quadruple mutant strain to viability. Our results demonstrate an ancestral mechanism for gut specification and differentiation in Caenorhabditis involving a simpler POP-1→ELT-3→ELT-2 gene network.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis , Animals , Endoderm/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis/genetics , Caenorhabditis/metabolism , GATA Transcription Factors/genetics , GATA Transcription Factors/metabolism , Gene Regulatory Networks
11.
Development ; 149(12)2022 06 15.
Article in English | MEDLINE | ID: mdl-35758255

ABSTRACT

The architecture of gene regulatory networks determines the specificity and fidelity of developmental outcomes. We report that the core regulatory circuitry for endoderm development in Caenorhabditis elegans operates through a transcriptional cascade consisting of six sequentially expressed GATA-type factors that act in a recursive series of interlocked feedforward modules. This structure results in sequential redundancy, in which removal of a single factor or multiple alternate factors in the cascade leads to a mild or no effect on gut development, whereas elimination of any two sequential factors invariably causes a strong phenotype. The phenotypic strength is successfully predicted with a computational model based on the timing and levels of transcriptional states. We found that one factor in the middle of the cascade, END-1, which straddles the distinct events of specification and differentiation, functions in both processes. Finally, we reveal roles for key GATA factors in establishing spatial regulatory state domains by repressing other fates, thereby defining boundaries in the digestive tract. Our findings provide a paradigm that could account for the genetic redundancy observed in many developmental regulatory systems.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Endoderm/metabolism , GATA Transcription Factors/genetics , GATA Transcription Factors/metabolism , Gene Expression Regulation, Developmental , Logic , Transcription Factors/metabolism
12.
J Biol Chem ; 298(3): 101621, 2022 03.
Article in English | MEDLINE | ID: mdl-35074429

ABSTRACT

Inhibition of P300 acetyltransferase activity by specific inhibitor C646 has been shown to improve insulin signaling. However, the underlying molecular mechanism of this improvement remains unclear. In this study, we analyzed P300 levels of obese patients and found that they were significantly increased in liver hepatocytes. In addition, large amounts of P300 appeared in the cytoplasm. Inhibition of P300 acetyltransferase activity by C646 drastically increased tyrosine phosphorylation of the insulin receptor protein substrates (IRS1/2) without affecting the tyrosine phosphorylation of the beta subunit of the insulin receptor (IRß) in hepatocytes in the absence of insulin. Since IRS1/2 requires membrane translocation and binding to inositol compounds for normal functions, we also examined the role of acetylation on binding to phosphatidylinositol(4,5)P2 and found that IRS1/2 acetylation by P300 reduced this binding. In contrast, we show that inhibition of IRS1/2 acetylation by C646 facilitates IRS1/2 membrane translocation. Intriguingly, we demonstrate that C646 activates IRß's tyrosine kinase activity and directly promotes IRß interaction with IRS1/2, leading to the tyrosine phosphorylation of IRS1/2 and subsequent activation of insulin signaling even in the absence of insulin. In conclusion, these data reveal the unique effects of C646 in activating insulin signaling in patients with obesity and diabetes.


Subject(s)
Benzoates , Enzyme Inhibitors , Insulin Receptor Substrate Proteins , Nitrobenzenes , Pyrazolones , Receptor, Insulin , p300-CBP Transcription Factors , Benzoates/pharmacology , Enzyme Inhibitors/pharmacology , Humans , Insulin/metabolism , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , Nitrobenzenes/pharmacology , Phosphorylation , Pyrazolones/pharmacology , Receptor, Insulin/metabolism , Tyrosine/metabolism , p300-CBP Transcription Factors/antagonists & inhibitors , p300-CBP Transcription Factors/metabolism
13.
Nat Commun ; 12(1): 6486, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34759311

ABSTRACT

The hepatokine follistatin is elevated in patients with type 2 diabetes (T2D) and promotes hyperglycemia in mice. Here we explore the relationship of plasma follistatin levels with incident T2D and mechanisms involved. Adjusted hazard ratio (HR) per standard deviation (SD) increase in follistatin levels for T2D is 1.24 (CI: 1.04-1.47, p < 0.05) during 19-year follow-up (n = 4060, Sweden); and 1.31 (CI: 1.09-1.58, p < 0.01) during 4-year follow-up (n = 883, Finland). High circulating follistatin associates with adipose tissue insulin resistance and non-alcoholic fatty liver disease (n = 210, Germany). In human adipocytes, follistatin dose-dependently increases free fatty acid release. In genome-wide association study (GWAS), variation in the glucokinase regulatory protein gene (GCKR) associates with plasma follistatin levels (n = 4239, Sweden; n = 885, UK, Italy and Sweden) and GCKR regulates follistatin secretion in hepatocytes in vitro. Our findings suggest that GCKR regulates follistatin secretion and that elevated circulating follistatin associates with an increased risk of T2D by inducing adipose tissue insulin resistance.


Subject(s)
Diabetes Mellitus, Type 2/blood , Follistatin/blood , Adaptor Proteins, Signal Transducing/blood , Adipose Tissue/metabolism , Genome-Wide Association Study , Hepatocytes/metabolism , Humans , Insulin Resistance/physiology , Middle Aged , Non-alcoholic Fatty Liver Disease/blood
14.
Eur J Cell Biol ; 100(7-8): 151186, 2021.
Article in English | MEDLINE | ID: mdl-34839178

ABSTRACT

N-linked glycosylation is a post-translational modification crucial for membrane protein folding, stability and other cellular functions. Alteration of membrane protein N-glycans is implicated in wide range of pathological conditions including cancer metastasis, chronic inflammatory diseases, and viral pathogenesis. Even though the roles of N-glycans have been studied extensively, our knowledge of their mechanisms remains unclear due to the lack of detailed structural analysis of the N-glycome. Mapping the N-glycome landscape will open new avenues to explore disease mechanisms and identify novel therapeutic targets. This review discusses the diverse structure of N-linked glycans, the function and regulation of N-glycosylation in health and disease, and ends with a focus on recent approaches to target N-glycans in rheumatoid arthritis and cancer metastasis.


Subject(s)
Polysaccharides , Protein Processing, Post-Translational , Glycosylation
15.
Elife ; 102021 10 08.
Article in English | MEDLINE | ID: mdl-34622775

ABSTRACT

The elucidation of the mechanisms whereby the liver maintains glucose homeostasis is crucial for the understanding of physiological and pathological states. Here, we show a novel role of hepatic transcriptional co-activator with PDZ-binding motif (TAZ) in the inhibition of glucocorticoid receptor (GR). TAZ is abundantly expressed in pericentral hepatocytes and its expression is markedly reduced by fasting. TAZ interacts via its WW domain with the ligand-binding domain of GR to limit the binding of GR to the GR response element in gluconeogenic gene promoters. Therefore, liver-specific TAZ knockout mice show increases in glucose production and blood glucose concentration. Conversely, the overexpression of TAZ in mouse liver reduces the binding of GR to gluconeogenic gene promoters and glucose production. Thus, our findings demonstrate that hepatic TAZ inhibits GR transactivation of gluconeogenic genes and coordinates gluconeogenesis in response to physiological fasting and feeding.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Gluconeogenesis/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Liver/metabolism , Receptors, Glucocorticoid/physiology , Animals , Blood Glucose , Homeostasis , Mice, Knockout
16.
Mol Metab ; 52: 101304, 2021 10.
Article in English | MEDLINE | ID: mdl-34274528

ABSTRACT

The discovery of insulin 100 years ago and its application to the treatment of human disease in the years since have marked a major turning point in the history of medicine. The availability of purified insulin allowed for the establishment of its physiological role in the regulation of blood glucose and ketones, the determination of its amino acid sequence, and the solving of its structure. Over the last 50 years, the function of insulin has been applied into the discovery of the insulin receptor and its signaling cascade to reveal the role of impaired insulin signaling-or resistance-in the progression of type 2 diabetes. It has also become clear that insulin signaling can impact not only classical insulin-sensitive tissues, but all tissues of the body, and that in many of these tissues the insulin signaling cascade regulates unexpected physiological functions. Despite these remarkable advances, much remains to be learned about both insulin signaling and how to use this molecular knowledge to advance the treatment of type 2 diabetes and other insulin-resistant states.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Insulin Resistance , Insulin/metabolism , Receptor, Insulin/metabolism , Adipose Tissue/metabolism , Animals , Blood Glucose/metabolism , Brain/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/history , Diabetes Mellitus, Type 2/pathology , Disease Models, Animal , Endothelium, Vascular/metabolism , Feedback, Physiological , History, 20th Century , History, 21st Century , Humans , Insulin/administration & dosage , Insulin/history , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Liver/metabolism , Muscle, Skeletal/metabolism , Receptor, Insulin/history , Signal Transduction
17.
J Biol Chem ; 297(2): 100964, 2021 08.
Article in English | MEDLINE | ID: mdl-34270960

ABSTRACT

Vacuolar H+-ATPases (V-ATPases) are large, multisubunit proton pumps that acidify the lumen of organelles in virtually every eukaryotic cell and in specialized acid-secreting animal cells, the enzyme pumps protons into the extracellular space. In higher organisms, most of the subunits are expressed as multiple isoforms, with some enriched in specific compartments or tissues and others expressed ubiquitously. In mammals, subunit a is expressed as four isoforms (a1-4) that target the enzyme to distinct biological membranes. Mutations in a isoforms are known to give rise to tissue-specific disease, and some a isoforms are upregulated and mislocalized to the plasma membrane in invasive cancers. However, isoform complexity and low abundance greatly complicate purification of active human V-ATPase, a prerequisite for developing isoform-specific therapeutics. Here, we report the purification of an active human V-ATPase in native lipid nanodiscs from a cell line stably expressing affinity-tagged a isoform 4 (a4). We find that exogenous expression of this single subunit in HEK293F cells permits assembly of a functional V-ATPase by incorporation of endogenous subunits. The ATPase activity of the preparation is >95% sensitive to concanamycin A, indicating that the lipid nanodisc-reconstituted enzyme is functionally coupled. Moreover, this strategy permits purification of the enzyme's isolated membrane subcomplex together with biosynthetic assembly factors coiled-coil domain-containing protein 115, transmembrane protein 199, and vacuolar H+-ATPase assembly integral membrane protein 21. Our work thus lays the groundwork for biochemical characterization of active human V-ATPase in an a subunit isoform-specific manner and establishes a platform for the study of the assembly and regulation of the human holoenzyme.


Subject(s)
Vacuolar Proton-Translocating ATPases , Biological Transport , Cell Membrane/metabolism , Humans , Saccharomyces cerevisiae/metabolism
18.
Int J Mol Sci ; 22(13)2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34203247

ABSTRACT

This review focuses on one of the 16 proteins composing the V-ATPase complex responsible for resorbing bone: the a3 subunit. The rationale for focusing on this biomolecule is that mutations in this one protein account for over 50% of osteopetrosis cases, highlighting its critical role in bone physiology. Despite its essential role in bone remodeling and its involvement in bone diseases, little is known about the way in which this subunit is targeted and regulated within osteoclasts. To this end, this review is broadened to include the three other mammalian paralogues (a1, a2 and a4) and the two yeast orthologs (Vph1p and Stv1p). By examining the literature on all of the paralogues/orthologs of the V-ATPase a subunit, we hope to provide insight into the molecular mechanisms and future research directions specific to a3. This review starts with an overview on bone, highlighting the role of V-ATPases in osteoclastic bone resorption. We then cover V-ATPases in other location/functions, highlighting the roles which the four mammalian a subunit paralogues might play in differential targeting and/or regulation. We review the ways in which the energy of ATP hydrolysis is converted into proton translocation, and go in depth into the diverse role of the a subunit, not only in proton translocation but also in lipid binding, cell signaling and human diseases. Finally, the therapeutic implication of targeting a3 specifically for bone diseases and cancer is discussed, with concluding remarks on future directions.


Subject(s)
Osteoclasts/cytology , Osteoclasts/metabolism , Osteopetrosis/metabolism , Vacuolar Proton-Translocating ATPases/chemistry , Vacuolar Proton-Translocating ATPases/metabolism , Animals , Bone Resorption , Humans , Mutation/genetics
20.
Biochem Biophys Res Commun ; 559: 148-154, 2021 06 25.
Article in English | MEDLINE | ID: mdl-33940386

ABSTRACT

Type 2 diabetes mellitus (T2DM), characterized by hyperglycemia and insulin resistance, has been recognized as a risk factor for cognitive impairment and dementia, including Alzheimer's disease (AD). Insulin receptor substrate2 (IRS2) is a major component of the insulin/insulin-like growth factor-1 signaling pathway. Irs2 deletion leads to life-threatening T2DM, promoting premature death in male mice regardless of their genetic background. Here, we showed for the first time that young adult male mice lacking Irs2 on a C57BL/6J genetic background (Irs2-/-/6J) survived in different experimental environments and displayed hippocampus-associated behavioral alterations. Young adult male Irs2-/-/6J mice also exhibit aberrant alterations in energy and nutrient sensors, such as AMP-activated protein kinase (AMPK) and glucose transporter3 (GLUT3), and reduced core body temperature accompanied by abnormal change in the temperature sensor in the brain. These results suggest that Irs2 deficiency-induced impairments of brain energy metabolism and thermoregulation contribute to hippocampus-associated behavioral changes in young adult male mice.


Subject(s)
Gene Deletion , Hippocampus/metabolism , Insulin Receptor Substrate Proteins/genetics , Animals , Body Temperature Regulation , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Energy Metabolism , Insulin Receptor Substrate Proteins/metabolism , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...