Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(5): e0299235, 2024.
Article in English | MEDLINE | ID: mdl-38805414

ABSTRACT

In this study, we characterize the exopolymer produced by Halomonas sp. strain TGOS-10 -one of the organisms found enriched in sea surface oil slicks during the Deepwater Horizon oil spill. The polymer was produced during the early stationary phase of growth in Zobell's 2216 marine medium amended with glucose. Chemical and proton NMR analysis showed it to be a relatively monodisperse, high-molecular-mass (6,440,000 g/mol) glycoprotein composed largely of protein (46.6% of total dry weight of polymer). The monosaccharide composition of the polymer is typical to that of other marine bacterial exopolymers which are generally rich in hexoses, with the notable exception that it contained mannose (commonly found in yeast) as a major monosaccharide. The polymer was found to act as an oil dispersant based on its ability to effectively emulsify pure and complex oils into stable oil emulsions-a function we suspect to be conferred by the high protein content and high ratio of total hydrophobic nonpolar to polar amino acids (52.7:11.2) of the polymer. The polymer's chemical composition, which is akin to that of other marine exopolymers also having a high protein-to-carbohydrate (P/C) content, and which have been shown to effect the rapid and non-ionic aggregation of marine gels, appears indicative of effecting marine oil snow (MOS) formation. We previously reported the strain capable of utilising aromatic hydrocarbons when supplied as single carbon sources. However, here we did not detect biodegradation of these chemicals within a complex (surrogate Macondo) oil, suggesting that the observed enrichment of this organism during the Deepwater Horizon spill may be explained by factors related to substrate availability and competition within the complex and dynamic microbial communities that were continuously evolving during that spill.


Subject(s)
Halomonas , Petroleum Pollution , Halomonas/metabolism , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/metabolism , Petroleum/metabolism , Seawater/microbiology , Seawater/chemistry , Surface-Active Agents/metabolism , Surface-Active Agents/chemistry , Biodegradation, Environmental
2.
Carbohydr Polym ; 308: 120649, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36813341

ABSTRACT

Heparin, a major anticoagulant drug, comprises a complex mixture of motifs. Heparin is isolated from natural sources while being subjected to a variety of conditions but the detailed effects of these on heparin structure have not been studied in depth. Therefore, the result of exposing heparin to a range of buffered environments, ranging pH values from 7 to 12, and temperatures of 40, 60 and 80 °C were examined. There was no evidence of significant N-desulfation or 6-O-desulfation in glucosamine residues, nor of chain scission, however, stereochemical re-arrangement of α-L-iduronate 2-O-sulfate to α-L-galacturonate residues occurred in 0.1 M phosphate buffer at pH 12/80 °C. The results confirm the relative stability of heparin in environments like those during extraction and purification processes; on the other hand, the sensitivity of heparin to pH 12 in buffered solution at high temperature is highlighted, providing an important insight for heparin manufacturers.


Subject(s)
Heparin , Sulfates , Heparin/chemistry , Iduronic Acid , Phosphates
3.
Curr Res Food Sci ; 4: 398-404, 2021.
Article in English | MEDLINE | ID: mdl-34169284

ABSTRACT

The cooperativity of six cations (Ca2+, Mg2+, Zn2+, Al3+, Cr3+ and Fe3+), three pectins (sugar beet, high and low methyl esterified), three dispersed phases (medium chain triglycerides (MCT), orange oil and hexadecane), time (30 days) and pH (2.0 and 6.0) has been investigated in the formation and stability against coarsening of oil-in-water emulsions. Cations generally influenced emulsion stability in the following order (most stable) Ca2+ â€‹> â€‹Mg2+ â€‹> â€‹Al3+ â€‹> â€‹Cr3+ â€‹> â€‹Zn2+ â€‹> â€‹Fe3+ (least stable). This order largely coincided with that of the strength of pectin-cation interactions showing that the higher the affinity of cation for pectin the less stable the emulsion. More stable emulsions were formed with sugar beet pectin, which was also unresponsive to the presence of cations, followed by high- and then low-methyl esterified samples. At pH 2.0 all pectins showed their best emulsification performance whereas shifting pH to 6.0 severely impaired emulsification capacity and longer term stability against droplet growth. Smaller droplets were created with hexadecane under all conditions studied followed by MCT and orange oil in agreement with their aqueous solubilities. The present results advance our understanding of the stabilisation of emulsions using pectin and allow us to tailor their functionality for applications in food, pharmaceutical and biomedical industries.

4.
ACS Appl Mater Interfaces ; 13(4): 5551-5563, 2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33471995

ABSTRACT

Heparin is a complex glycosaminoglycan, derived mainly from pig mucosa, used therapeutically for its anticoagulant activity. Yet, owing largely to the chain complexity, the progressive effects of environmental conditions on heparin structure have not been fully described. A systematic study of the influence of acidic hydrolysis on heparin chain length and substitution has therefore been conducted. Changes in the sulfation pattern, monitored via 2D NMR, revealed initial de-N-sulfation of the molecule (pH 1/ 40 °C) and unexpectedly identified the secondary sulfate of iduronate as more labile than the 6-O-sulfate of glucosamine residues under these conditions (pH 1/ 60 °C). Additionally, the loss of sulfate groups, rather than depolymerization, accounted for most of the reduction in molecular weight. This provides an alternative route to producing partially 2-O-de-sulfated heparin derivatives that avoids using conventional basic conditions and may be of value in the optimization of processes associated with the production of heparin pharmaceuticals.


Subject(s)
Anticoagulants/chemistry , Heparin/chemistry , Sulfates/analysis , Animals , Hydrogen-Ion Concentration , Hydrolysis , Magnetic Resonance Spectroscopy , Swine
5.
Curr Res Food Sci ; 3: 314-321, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33336193

ABSTRACT

Bioactive peptides (BAPs) can be derived from a variety of sources; these could be from dietary proteins which are then broken down in the gastrointestinal tract to release BAPs, or they can be isolated from various sources ex vivo. Sources include plant-based proteins such as soy, and chickpeas, and animal proteins from waste from the meat industry and from fish skin. Bioinformatics is also a useful approach to assess the peptides released from digests due to the great number of possible sequences that can be isolated from proteins. Therefore, an in silico analysis of peptides could potentially lead to a more rapid discovery of BAPs. This article investigates a "crude" liver peptide mixture derived from papain hydrolysis of porcine liver and purified peptides derived from the hydrolysates following HPLC fractionation and in silico digestion of the host proteins identified using LC-MS/MS. This allowed the identification of two proteins (cytosol aminopeptidase and haemoglobin subunit alpha) present in the "crude" mixture after LC-MS/MS. In silico hydrolysis of these proteins identified that several peptides were predicted to be both present in the crude mixture using the BIOPEP database and to have potential bioactivity using the Peptide Ranker tool. Peptides (FWG, MFLG and SDPPLVFVG) with the greatest potential bioactivity and which had not previously been reported in the literature were then synthesised. The results indicated that the predicted bioactivity of the synthetic peptides would likely include antioxidant activity. FWG and MFLG derived from the in silico papain hydrolysis of cytosol aminopeptidase showed activity better or comparable to Trolox in the Oxygen Radical Absorbance Capacity (ORAC) assay. The use of these in silico tools, alongside a robust range of biochemical assays which cover a wider range of bioactivities would be a way of improving the discovery of novel bioactive peptides.

6.
Pharmaceutics ; 12(11)2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33105866

ABSTRACT

Fluorescent dye labeling is a common strategy to analyze the fate of administered nanoparticles in living organisms. However, to which extent the labeling processes can alter the original nanoparticle biodistribution has been so far neglected. In this work, two widely used fluorescent dye molecules, namely, ATTO488 (ATTO) and Sulfo-Cy5 (S-Cy5), have been covalently attached to a well-characterized CXCR4-targeted self-assembling protein nanoparticle (known as T22-GFP-H6). The biodistribution of labeled T22-GFP-H6-ATTO and T22-GFP-H6-S-Cy5 nanoparticles has been then compared to that of the non-labeled nanoparticle in different CXCR4+ tumor mouse models. We observed that while parental T22-GFP-H6 nanoparticles accumulated mostly and specifically in CXCR4+ tumor cells, labeled T22-GFP-H6-ATTO and T22-GFP-H6-S-Cy5 nanoparticles showed a dramatic change in the biodistribution pattern, accumulating in non-target organs such as liver or kidney while reducing tumor targeting capacity. Therefore, the use of such labeling molecules should be avoided in target and non-target tissue uptake studies during the design and development of targeted nanoscale drug delivery systems, since their effect over the fate of the nanomaterial can lead to considerable miss-interpretations of the actual nanoparticle biodistribution.

7.
J Hematol Oncol ; 13(1): 36, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32295630

ABSTRACT

BACKGROUND: Current acute myeloid leukemia (AML) therapy fails to eliminate quiescent leukemic blasts in the bone marrow, leading to about 50% of patient relapse by increasing AML burden in the bone marrow, blood, and extramedullar sites. We developed a protein-based nanoparticle conjugated to the potent antimitotic agent Auristatin E that selectively targets AML blasts because of their CXCR4 receptor overexpression (CXCR4+) as compared to normal cells. The therapeutic rationale is based on the involvement of CXCR4 overexpression in leukemic blast homing and quiescence in the bone marrow, and the association of these leukemic stem cells with minimal residual disease, dissemination, chemotherapy resistance, and lower patient survival. METHODS: Monomethyl Auristatin E (MMAE) was conjugated with the CXCR4 targeted protein nanoparticle T22-GFP-H6 produced in E. coli. Nanoconjugate internalization and in vitro cell viability assays were performed in CXCR4+ AML cell lines to analyze the specific antineoplastic activity through the CXCR4 receptor. In addition, a disseminated AML animal model was used to evaluate the anticancer effect of T22-GFP-H6-Auristatin in immunosuppressed NSG mice (n = 10/group). U of Mann-Whitney test was used to consider if differences were significant between groups. RESULTS: T22-GFP-H6-Auristatin was capable to internalize and exert antineoplastic effects through the CXCR4 receptor in THP-1 and SKM-1 CXCR4+ AML cell lines. In addition, repeated administration of the T22-GFP-H6-Auristatin nanoconjugate (9 doses daily) achieves a potent antineoplastic activity by internalizing specifically in the leukemic cells (luminescent THP-1) to selectively eliminate them. This leads to reduced involvement of leukemic cells in the bone marrow, peripheral blood, liver, and spleen, while avoiding toxicity in normal tissues in a luminescent disseminated AML mouse model. CONCLUSIONS: A novel nanoconjugate for targeted drug delivery of Auristatin reduces significantly the acute myeloid leukemic cell burden in the bone marrow and blood and blocks its dissemination to extramedullar organs in a CXCR4+ AML model. This selective drug delivery approach validates CXCR4+ AML cells as a target for clinical therapy, not only promising to improve the control of leukemic dissemination but also dramatically reducing the severe toxicity of classical AML therapy.


Subject(s)
Aminobenzoates/therapeutic use , Antineoplastic Agents/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Nanoconjugates/therapeutic use , Oligopeptides/therapeutic use , Receptors, CXCR4/metabolism , Aminobenzoates/administration & dosage , Animals , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Drug Delivery Systems , Female , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred NOD , Nanoconjugates/administration & dosage , Neoplasm Invasiveness/pathology , Neoplasm Invasiveness/prevention & control , Oligopeptides/administration & dosage
9.
Appl Microbiol Biotechnol ; 104(3): 1063-1076, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31813048

ABSTRACT

During screening for novel emulsifiers and surfactants, a marine gammaproteobacterium, Halomonas sp. MCTG39a, was isolated and selected for its production of an extracellular emulsifying agent, P39a. This polymer was produced by the new isolate during growth in a modified Zobell's 2216 medium amended with 1% glucose, and was extractable by cold ethanol precipitation. Chemical, chromatographic and nuclear magnetic resonance spectroscopic analysis confirmed P39a to be a high-molecular-weight (~ 261,000 g/mol) glycoprotein composed of carbohydrate (17.2%) and protein (36.4%). The polymer exhibited high emulsifying activities against a range of oil substrates that included straight-chain aliphatics, mono- and alkyl- aromatics and cycloparaffins. In general, higher emulsification values were measured under low (0.1 M PBS) compared to high (synthetic seawater) ionic strength conditions, indicating that low ionic strength is more favourable for emulsification by the P39a polymer. However, as observed with other bacterial emulsifying agents, the polymer emulsified some aromatic hydrocarbon species, as well as refined and crude oils, more effectively under high ionic strength conditions, which we posit could be due to steric adsorption to these substrates as may be conferred by the protein fraction of the polymer. Furthermore, the polymer effected a positive influence on the degradation of phenanthrene by other marine bacteria, such as the specialist PAH-degrader Polycyclovorans algicola. Collectively, based on the ability of this Halomonas high-molecular-weight glycoprotein to emulsify a range of pure hydrocarbon species, as well as refined and crude oils, it shows promise for the bioremediation of contaminated sites.


Subject(s)
Emulsifying Agents/chemistry , Extracellular Polymeric Substance Matrix/chemistry , Halomonas/chemistry , Biodegradation, Environmental , Phylogeny , RNA, Ribosomal, 16S , Seawater/microbiology , Surface-Active Agents/chemistry
10.
Food Funct ; 10(4): 1792-1796, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30919868

ABSTRACT

The objectives of this study were to estimate the impact of chewing time on caffeine release from gum and to understand caffeine pharmacokinetics. Caffeine release increased with chewing time (2 min < 5 min < 10 min). Furthermore, two plasma caffeine concentration peaks were observed suggesting that caffeine absorption occurs both through the oral mucosa and gastrointestinal tract. This is of practical relevance to maximise caffeine doses and to synchronise effort with peak caffeine concentration.


Subject(s)
Caffeine/pharmacokinetics , Chewing Gum/analysis , Adult , Caffeine/blood , Female , Gastrointestinal Tract/metabolism , Humans , Male , Middle Aged , Mouth Mucosa/metabolism , Young Adult
11.
Int J Biol Macromol ; 120(Pt B): 1610-1617, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30282010

ABSTRACT

Mucoadhesive molecules such as chitosan, can allow targeting of a particular tissue to prolong residence time and subsequently improve bioavailability. The purpose of this study was to investigate chitosan-tripolyphosphate (CS:TPP) nanoparticles and to evaluate the interaction between nanoparticles of different CS:TPP ratios with mucin using viscosity, particle size analysis and ζ-potential. For all CS:TPP ratios examined, a minimum value of viscosity was reached for a 3:1 CS:TPP ratio, however chitosan nanoparticles at this ratio were not stable (<+30 mV), whereas a CS:TPP ratio of 4:1 displayed the strongest interaction. This suggests a minimum CS:TPP ratio of 4:1 is required to produce stable nanoparticles able to form strong interactions, which is consistent with a greater mucin binding efficiencies at CS:TPP ratios of 4:1 and higher, which were quantified using a colorimetric assay. Further analysis of similar systems could lead potentially to tuneable chitosan nanoparticles for specific applications.


Subject(s)
Chitosan/analogs & derivatives , Drug Carriers/chemistry , Mucous Membrane/chemistry , Nanoparticles , Adhesiveness , Chitosan/chemistry , Chitosan/metabolism , Drug Carriers/metabolism , Mucins/metabolism , Mucous Membrane/metabolism , Particle Size
12.
Mar Pollut Bull ; 135: 205-215, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30301032

ABSTRACT

A distinctive feature of the Deepwater Horizon (DwH) oil spill was the formation of significant quantities of marine oil snow (MOS), for which the mechanism(s) underlying its formation remain unresolved. Here, we show that Alteromonas strain TK-46(2), Pseudoalteromonas strain TK-105 and Cycloclasticus TK-8 - organisms that became enriched in sea surface oil slicks during the spill - contributed to the formation of MOS and/or dispersion of the oil. In roller-bottle incubations, Alteromonas cells and their produced EPS yielded MOS, whereas Pseudoalteromonas and Cycloclasticus did not. Interestingly, the Cycloclasticus strain was able to degrade n-alkanes concomitantly with aromatics within the complex oil mixture, which is atypical for members of this genus. Our findings, for the first time, provide direct evidence on the hydrocarbon-degrading capabilities for these bacteria enriched during the DwH spill, and that bacterial cells of certain species and their produced EPS played a direct role in MOS formation.


Subject(s)
Bacteria/metabolism , Geologic Sediments/microbiology , Petroleum Pollution , Seawater/microbiology , Alkanes/metabolism , Alteromonas/physiology , Biodegradation, Environmental , Emulsions/chemistry , Gulf of Mexico , Hydrocarbons/metabolism , Petroleum/metabolism
13.
Int J Biol Macromol ; 111: 839-847, 2018 May.
Article in English | MEDLINE | ID: mdl-29292146

ABSTRACT

A water-soluble mucilage extracted from the leaves of Hoheria populnea was chemically and physically studied. Monosaccharide composition and linkages were determined by high performance anion exchange chromatography (HPAEC), gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) spectroscopy. Lacebark mucilage was composed of rhamnose, galactose, galacturonic acid and glucuronic acid (2:1:2:1). Proton and 13C NMR spectroscopy, and linkage analysis, revealed a predominantly rhamnogalacturonan I-type (RG I-type) structure comprising of a backbone of →4]-α-D-GalpA-[1→2]-α-L-Rhap-[1→. Data indicated the mucilage likely comprises of a polymer containing several structurally discrete domains or possibly more than one discrete polymer. One domain contains a RG I-type backbone with branching at O-3 of GalpA residues to terminal ß-D-GlcpA residues, another similarly contains a RG I-type backbone but is branched at O-4 of the Rhap residues to terminal GalpA residues or oligosaccharides containing α-linked 4-Galp and terminal GalpA residues. A possible third domain contains contiguous 2-Rhap residues, some branched at O-3. Hydrated mucilage exhibited pseudoplastic flow behaviour and viscoelastic properties of an entangled biopolymer network. These rheological behaviours were only slightly affected by pH and may prove advantageous in potential end-product applications including oral pharmaceuticals or as a food ingredient.


Subject(s)
Malvaceae/chemistry , Molecular Structure , Plant Leaves/chemistry , Polysaccharides/chemistry , Adhesives/chemistry , Carbohydrate Sequence , Cell Wall/chemistry , Gas Chromatography-Mass Spectrometry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Magnetic Resonance Spectroscopy , Monosaccharides/chemistry , Oligosaccharides/chemistry , Polysaccharides/isolation & purification , Rheology
14.
Polymers (Basel) ; 10(4)2018 Apr 14.
Article in English | MEDLINE | ID: mdl-30966477

ABSTRACT

In this paper, we compared the transfection efficiency and cytotoxicity of methylglycol-chitosan (MG-CS) and diethylaminoethyl-chitosan (DEAE-CSI and DEAE-CSII with degrees of substitution of 1.2 and 0.57, respectively) to that of Lipofectamine (used as a reference transfection vector). MG-CS contains quaternary amines to improve DNA binding, whereas the DEAE-CS exhibits pH buffering capability that would ostensibly enhance transfection efficiency by promoting endosomal escape. Gel retardation assays showed that both DEAE-CS and MG-CS bound to DNA at a polysaccharide:DNA mass ratio of 2:1. In Calu-3 cells, the DNA transfection activity was significantly better with MG-CS than with DEAE-CS, and the efficiency improved with increasing polysaccharide:DNA ratios. By contrast, the efficiency of DEAE-CSI and DEAE-CSII was independent of the polysaccharide:DNA ratio. Conversely, in the transfection-recalcitrant JAWSII cells, both Lipofectamine and MG-CS showed significantly lower DNA transfection activity than in Calu-3 cells, whereas the efficiency of DEAE-CSI and DEAE-CSII was similar in both cell lines. The toxicity of DEAE-CS increased with increasing concentrations of the polymer and its degree of substitution, whereas MG-CS demonstrated negligible cytotoxicity, even at the highest concentration studied. Overall, MG-CS proved to be a more efficient and less toxic transfection agent when compared to DEAE-CS.

15.
Int J Biol Macromol ; 95: 564-573, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27894825

ABSTRACT

Chitosan (CS) is a natural cationic polymer obtained by the partial N-deacetylation of chitin. Chitosan microparticles can be prepared by cross-linking with tripolyphosphate (TPP) via the ionic interaction between positively charged amino groups (CS) and negatively charged counter ions (TPP). This can be controlled by the charge density of CS and TPP, which depend on the pH and ionic strength of the solution. The purpose of this study is to investigate the combined effects of three independent variables (pH, ionic strength and CS:TPP ratio) on three important physico-chemical properties (viscosity, zeta potential and particle size) during the preparation of microparticles. CS:TPP microparticles were prepared using experimental design and equations were generated and used to predict relative viscosity, zeta potential and particle size under different conditions. This gives us the ability to design tuneable CS-TPP microparticles with desired size for specific pharmaceutical or forensic applications e.g. latent fingerprint visualisation.


Subject(s)
Chitosan/chemistry , Drug Carriers/chemistry , Drug Design , Forensic Sciences , Microspheres , Particle Size , Polyphosphates/chemistry , Acetates/chemistry , Adhesiveness , Buffers , Drug Liberation , Hydrogen-Ion Concentration , Mucous Membrane/chemistry , Osmolar Concentration , Viscosity
16.
Sci Rep ; 6: 35588, 2016 10 26.
Article in English | MEDLINE | ID: mdl-27782149

ABSTRACT

The structural integrity of meningococcal native, micro-fluidized and activated capsular polysaccharides and their glycoconjugates - in the form most relevant to their potential use as vaccines (dilute solution) - have been investigated with respect to their homogeneity, conformation and flexibility. Sedimentation velocity analysis showed that the polysaccharide size distributions were generally bimodal with some evidence for higher molar mass forms at higher concentration. Weight average molar masses Mw where lower for activated polysaccharides. Conjugation with tetanus toxoid protein however greatly increased the molar mass and polydispersity of the final conjugates. Glycoconjugates had an approximately unimodal log-normal but broad and large molar mass profiles, confirmed by sedimentation equilibrium "SEDFIT MSTAR" analysis. Conformation analysis using HYDFIT (which globally combines sedimentation and viscosity data), "Conformation Zoning" and Wales-van Holde approaches showed a high degree of flexibility - at least as great as the unconjugated polysaccharides, and very different from the tetanus toxoid (TT) protein used for the conjugation. As with the recently published finding for Hib-TT complexes, it is the carbohydrate component that dictates the solution behaviour of these glycoconjugates, although the lower intrinsic viscosities suggest some degree of compaction of the carbohydrate chains around the protein.


Subject(s)
Glycoconjugates/chemistry , Neisseria meningitidis/metabolism , Polysaccharides, Bacterial/chemistry , Tetanus Toxoid/chemistry , Algorithms , Hydrodynamics , Neisseria meningitidis/chemistry , Protein Conformation , Ultracentrifugation
17.
Int J Biol Macromol ; 87: 281-6, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26944659

ABSTRACT

Mucins are the main macromolecular components of the mucus secretions that cover the oral cavity, gastrointestinal and urogenital tracts of animals. The properties of the mucus secretions are therefore directly correlated with the physicochemical properties of mucin glycoproteins. In this study, mucins were obtained from pig gastric mucous after digestion with pepsin at 37°C for 4h, these mucins were characterised in terms of compositional and hydrodynamic properties. Compositional analysis showed that this mucin contains protein (15%), carbohydrates (55%) of which the constituents are: fucose (4%), galactose (9%), glucosamine (55%), glucosamine (33%) and sialic acid (2%). The latter component gives the mucin polymer a pH-dependant negative charge, with a ζ-potential of -3mV at pH 1.2 up to -11mV at pH 7.4. The weight average molar mass was ∼1×10(6)g/mol and intrinsic viscosity was ∼0.42dL/g although there was a small pH dependency due to the polyelectrolyte behavior of the polymer. The measurements of viscosity versus shear rate showed shear thinning behavior and the critical overlap concentration was determined to be 10-11% w/v indicating a compact structure. Knowledge of these properties is fundamental to the understanding interactions of mucins, with for example, novel drug delivery systems.


Subject(s)
Chemical Phenomena , Gastric Mucins/chemistry , Gastric Mucins/metabolism , Pepsin A/metabolism , Proteolysis , Animals , Drug Carriers/chemistry , Drug Carriers/metabolism , Hydrodynamics , Mechanical Phenomena , Rheology , Swine
18.
Sci Rep ; 6: 22208, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26915577

ABSTRACT

Three important physical properties which may affect the performance of glycoconjugate vaccines against serious disease are molar mass (molecular weight), heterogeneity (polydispersity), and conformational flexibility in solution. The dilute solution behaviour of native and activated capsular polyribosylribitol (PRP) polysaccharides extracted from Haemophilus influenzae type b (Hib), and the corresponding glycoconjugate made by conjugating this with the tetanus toxoid (TT) protein have been characterized and compared using a combination of sedimentation equilibrium and sedimentation velocity in the analytical ultracentrifuge with viscometry. The weight average molar mass of the activated material was considerably reduced (Mw ~ 0.24 × 10(6) g.mol(-1)) compared to the native (Mw ~ 1.2 × 10(6) g.mol(-1)). Conjugation with the TT protein yielded large polydisperse structures (of Mw ~ 7.4 × 10(6) g.mol(-1)), but which retained the high degree of flexibility of the native and activated polysaccharide, with frictional ratio, intrinsic viscosity, sedimentation conformation zoning behaviour and persistence length all commensurate with highly flexible coil behaviour and unlike the previously characterised tetanus toxoid protein (slightly extended and hydrodynamically compact structure with an aspect ratio of ~3). This non-protein like behaviour clearly indicates that it is the carbohydrate component which mainly influences the physical behaviour of the glycoconjugate in solution.


Subject(s)
Antigens, Bacterial/physiology , Glycoconjugates/physiology , Haemophilus influenzae type b/pathogenicity , Hydrodynamics , Polysaccharides, Bacterial/physiology , Antigens, Bacterial/immunology , Centrifugation, Density Gradient , Glycoconjugates/immunology , Haemophilus Vaccines/immunology , Haemophilus influenzae type b/immunology , Humans , Polysaccharides, Bacterial/immunology , Tetanus Toxoid/immunology , Tetanus Toxoid/metabolism , Vaccines, Conjugate/immunology
19.
Crit Rev Food Sci Nutr ; 56 Suppl 1: S60-84, 2016 Jul 29.
Article in English | MEDLINE | ID: mdl-26463231

ABSTRACT

In recent decades, the polysaccharides from the medicinal plants have attracted a lot of attention due to their significant bioactivities, such as anti-tumor activity, antioxidant activity, anticoagulant activity, antidiabetic activity, radioprotection effect, anti-viral activity, hypolipidemic and immunomodulatory activities, which make them suitable for medicinal applications. Previous studies have also shown that medicinal plant polysaccharides are non-toxic and show no side effects. Based on these encouraging observations, most researches have been focusing on the isolation and identification of polysaccharides, as well as their bioactivities. A large number of bioactive polysaccharides with different structural features and biological effects from medicinal plants have been purified and characterized. This review provides a comprehensive summary of the most recent developments in physiochemical, structural features and biological activities of bioactive polysaccharides from a number of important medicinal plants, such as polysaccharides from Astragalus membranaceus, Dendrobium plants, Bupleurum, Cactus fruits, Acanthopanax senticosus, Angelica sinensis (Oliv.) Diels, Aloe barbadensis Miller, and Dimocarpus longan Lour. Moreover, the paper has also been focused on the applications of bioactive polysaccharides for medicinal applications. Recent studies have provided evidence that polysaccharides from medicinal plants can play a vital role in bioactivities. The contents and data will serve as a useful reference material for further investigation, production, and application of these polysaccharides in functional foods and therapeutic agents.


Subject(s)
Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Polysaccharides/pharmacology , Adjuvants, Immunologic/pharmacology , Animals , Anticarcinogenic Agents/pharmacology , Antineoplastic Agents/pharmacology , Chemical Phenomena , Disease Models, Animal , Humans , Phytochemicals/pharmacology
20.
Methods Mol Biol ; 1331: 211-27, 2015.
Article in English | MEDLINE | ID: mdl-26169743

ABSTRACT

Hydrodynamic methods are relevant for the characterization of carbohydrates such as capsular bacterial polysaccharides or glycoconjugates in solution. This chapter focuses on the following hydrodynamic methods: sedimentation velocity analytical ultracentrifugation (SV AUC), dynamic light scattering (DLS), sedimentation equilibrium analytical ultracentrifugation (SE AUC), size exclusion chromatography coupled to multi-angle light scattering (SEC-MALS), and capillary viscometry-intrinsic viscosity measurement. The chapter highlights the general principle of these five methods, describes experimental details, and specifies advances in the last years.


Subject(s)
Glycoconjugates/chemistry , Polysaccharides, Bacterial/chemistry , Chromatography, Gel/methods , Hydrodynamics , Ultracentrifugation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...