Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 887
Filter
1.
Neurology ; 102(12): e209426, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38776513

ABSTRACT

BACKGROUND AND OBJECTIVES: With the aging US population and increasing incidence of Alzheimer disease (AD), understanding factors contributing to driving cessation among older adults is crucial for clinicians. Driving is integral for maintaining independence and functional mobility, but the risk factors for driving cessation, particularly in the context of normal aging and preclinical AD, are not well understood. We studied a well-characterized community cohort to examine factors associated with driving cessation. METHODS: This prospective, longitudinal observation study enrolled participants from the Knight Alzheimer Disease Research Center and The DRIVES Project. Participants were enrolled if they were aged 65 years or older, drove weekly, and were cognitively normal (Clinical Dementia Rating [CDR] = 0) at baseline. Participants underwent annual clinical, neurologic, and neuropsychological assessments, including ß-amyloid PET imaging and CSF (Aß42, total tau [t-Tau], and phosphorylated tau [p-Tau]) collection every 2-3 years. The primary outcome was time from baseline visit to driving cessation, accounting for death as a competing risk. The cumulative incidence function of driving cessation was estimated for each biomarker. The Fine and Gray subdistribution hazard model was used to examine the association between time to driving cessation and biomarkers adjusting for clinical and demographic covariates. RESULTS: Among the 283 participants included in this study, there was a mean follow-up of 5.62 years. Driving cessation (8%) was associated with older age, female sex, progression to symptomatic AD (CDR ≥0.5), and poorer performance on a preclinical Alzheimer cognitive composite (PACC) score. Aß PET imaging did not independently predict driving cessation, whereas CSF biomarkers, specifically t-Tau/Aß42 (hazard ratio [HR] 2.82, 95% CI 1.23-6.44, p = 0.014) and p-Tau/Aß42 (HR 2.91, 95% CI 1.28-6.59, p = 0.012) ratios, were independent predictors in the simple model adjusting for age, education, and sex. However, in the full model, progression to cognitive impairment based on the CDR and PACC score across each model was associated with a higher risk of driving cessation, whereas AD biomarkers were not statistically significant. DISCUSSION: Female sex, CDR progression, and neuropsychological measures of cognitive functioning obtained in the clinic were strongly associated with future driving cessation. The results emphasize the need for early planning and conversations about driving retirement in the context of cognitive decline and the immense value of clinical measures in determining functional outcomes.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Automobile Driving , Biomarkers , tau Proteins , Humans , Female , Male , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/epidemiology , Alzheimer Disease/diagnosis , Aged , Biomarkers/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , tau Proteins/cerebrospinal fluid , Aged, 80 and over , Longitudinal Studies , Prospective Studies , Positron-Emission Tomography , Neuropsychological Tests , Cognition/physiology , Peptide Fragments/cerebrospinal fluid
2.
Brain Commun ; 6(3): fcae159, 2024.
Article in English | MEDLINE | ID: mdl-38784820

ABSTRACT

Approximately 5% of Alzheimer's disease patients develop symptoms before age 65 (early-onset Alzheimer's disease), with either sporadic (sporadic early-onset Alzheimer's disease) or dominantly inherited (dominantly inherited Alzheimer's disease) presentations. Both sporadic early-onset Alzheimer's disease and dominantly inherited Alzheimer's disease are characterized by brain amyloid-ß accumulation, tau tangles, hypometabolism and neurodegeneration, but differences in topography and magnitude of these pathological changes are not fully elucidated. In this study, we directly compared patterns of amyloid-ß plaque deposition and glucose hypometabolism in sporadic early-onset Alzheimer's disease and dominantly inherited Alzheimer's disease individuals. Our analysis included 134 symptomatic sporadic early-onset Alzheimer's disease amyloid-Positron Emission Tomography (PET)-positive cases from the University of California, San Francisco, Alzheimer's Disease Research Center (mean ± SD age 59.7 ± 5.6 years), 89 symptomatic dominantly inherited Alzheimer's disease cases (age 45.8 ± 9.3 years) and 102 cognitively unimpaired non-mutation carriers from the Dominantly Inherited Alzheimer Network study (age 44.9 ± 9.2). Each group underwent clinical and cognitive examinations, 11C-labelled Pittsburgh Compound B-PET and structural MRI. 18F-Fluorodeoxyglucose-PET was also available for most participants. Positron Emission Tomography scans from both studies were uniformly processed to obtain a standardized uptake value ratio (PIB50-70 cerebellar grey reference and FDG30-60 pons reference) images. Statistical analyses included pairwise global and voxelwise group comparisons and group-independent component analyses. Analyses were performed also adjusting for covariates including age, sex, Mini-Mental State Examination, apolipoprotein ε4 status and average composite cortical of standardized uptake value ratio. Compared with dominantly inherited Alzheimer's disease, sporadic early-onset Alzheimer's disease participants were older at age of onset (mean ± SD, 54.8 ± 8.2 versus 41.9 ± 8.2, Cohen's d = 1.91), with more years of education (16.4 ± 2.8 versus 13.5 ± 3.2, d = 1) and more likely to be apolipoprotein ε4 carriers (54.6% ε4 versus 28.1%, Cramer's V = 0.26), but similar Mini-Mental State Examination (20.6 ± 6.1 versus 21.2 ± 7.4, d = 0.08). Sporadic early-onset Alzheimer's disease had higher global cortical Pittsburgh Compound B-PET binding (mean ± SD standardized uptake value ratio, 1.92 ± 0.29 versus 1.58 ± 0.44, d = 0.96) and greater global cortical 18F-fluorodeoxyglucose-PET hypometabolism (mean ± SD standardized uptake value ratio, 1.32 ± 0.1 versus 1.39 ± 0.19, d = 0.48) compared with dominantly inherited Alzheimer's disease. Fully adjusted comparisons demonstrated relatively higher Pittsburgh Compound B-PET standardized uptake value ratio in the medial occipital, thalami, basal ganglia and medial/dorsal frontal regions in dominantly inherited Alzheimer's disease versus sporadic early-onset Alzheimer's disease. Sporadic early-onset Alzheimer's disease showed relatively greater 18F-fluorodeoxyglucose-PET hypometabolism in Alzheimer's disease signature temporoparietal regions and caudate nuclei, whereas dominantly inherited Alzheimer's disease showed relatively greater hypometabolism in frontal white matter and pericentral regions. Independent component analyses largely replicated these findings by highlighting common and unique Pittsburgh Compound B-PET and 18F-fluorodeoxyglucose-PET binding patterns. In summary, our findings suggest both common and distinct patterns of amyloid and glucose hypometabolism in sporadic and dominantly inherited early-onset Alzheimer's disease.

3.
Sleep Adv ; 5(1): zpae023, 2024.
Article in English | MEDLINE | ID: mdl-38711547

ABSTRACT

Introduction: Disrupted sleep is common in individuals with Alzheimer's disease (AD) and may be a marker for AD risk. The timing of sleep affects sleep-wake activity and is also associated with AD, but little is known about links between sleep architecture and the midpoint of sleep in older adults. In this study, we tested if the midpoint of sleep is associated with different measures of sleep architecture, AD biomarkers, and cognitive status among older adults with and without symptomatic AD. Methods: Participants (N = 243) with a mean age of 74 underwent standardized cognitive assessments, measurement of CSF AD biomarkers, and sleep monitoring via single-channel EEG, actigraphy, a home sleep apnea test, and self-reported sleep logs. The midpoint of sleep was defined by actigraphy. Results: A later midpoint of sleep was associated with African-American race and greater night-to-night variability in the sleep midpoint. After adjusting for multiple potential confounding factors, a later sleep midpoint was associated with longer rapid-eye movement (REM) onset latency, decreased REM sleep time, more actigraphic awakenings at night, and higher < 2 Hz non-REM slow-wave activity. Conclusions: Noninvasive in vivo markers of brain function, such as sleep, are needed to track both future risk of cognitive impairment and response to interventions in older adults at risk for AD. Sleep timing is associated with multiple other sleep measures and may affect their utility as markers of AD. The midpoint of sleep may be changed through behavioral intervention and should be taken into account when using sleep as a marker for AD risk.

4.
PLoS Biol ; 22(4): e3002607, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38687811

ABSTRACT

Unbiased data-driven omic approaches are revealing the molecular heterogeneity of Alzheimer disease. Here, we used machine learning approaches to integrate high-throughput transcriptomic, proteomic, metabolomic, and lipidomic profiles with clinical and neuropathological data from multiple human AD cohorts. We discovered 4 unique multimodal molecular profiles, one of them showing signs of poor cognitive function, a faster pace of disease progression, shorter survival with the disease, severe neurodegeneration and astrogliosis, and reduced levels of metabolomic profiles. We found this molecular profile to be present in multiple affected cortical regions associated with higher Braak tau scores and significant dysregulation of synapse-related genes, endocytosis, phagosome, and mTOR signaling pathways altered in AD early and late stages. AD cross-omics data integration with transcriptomic data from an SNCA mouse model revealed an overlapping signature. Furthermore, we leveraged single-nuclei RNA-seq data to identify distinct cell-types that most likely mediate molecular profiles. Lastly, we identified that the multimodal clusters uncovered cerebrospinal fluid biomarkers poised to monitor AD progression and possibly cognition. Our cross-omics analyses provide novel critical molecular insights into AD.


Subject(s)
Alzheimer Disease , Brain , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Humans , Animals , Brain/metabolism , Brain/pathology , Mice , Transcriptome/genetics , Proteomics/methods , Male , Biomarkers/metabolism , Metabolomics/methods , Machine Learning , Female , Disease Progression , Aged , Disease Models, Animal , Multiomics
5.
Neuropsychology ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602816

ABSTRACT

OBJECTIVE: We aimed to illustrate how complex cognitive data can be used to create domain-specific and general cognitive composites relevant to Alzheimer disease research. METHOD: Using equipercentile equating, we combined data from the Charles F. and Joanne Knight Alzheimer Disease Research Center that spanned multiple iterations of the Uniform Data Set. Exploratory factor analyses revealed four domain-specific composites representing episodic memory, semantic memory, working memory, and attention/processing speed. The previously defined preclinical Alzheimer disease cognitive composite (PACC) and a novel alternative, the Knight-PACC, were also computed alongside a global composite comprising all available tests. These three composites allowed us to compare the usefulness of domain and general composites in the context of predicting common Alzheimer disease biomarkers. RESULTS: General composites slightly outperformed domain-specific metrics in predicting imaging-derived amyloid, tau, and neurodegeneration burden. Power analyses revealed that the global, Knight-PACC, and attention and processing speed composites would require the smallest sample sizes to detect cognitive change in a clinical trial, while the Alzheimer Disease Cooperative Study-PACC required two to three times as many participants. CONCLUSIONS: Analyses of cognition with the Knight-PACC and our domain-specific composites offer researchers flexibility by providing validated outcome assessments that can equate across test versions to answer a wide range of questions regarding cognitive decline in normal aging and neurodegenerative disease. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

6.
Lancet Neurol ; 23(5): 500-510, 2024 May.
Article in English | MEDLINE | ID: mdl-38631766

ABSTRACT

BACKGROUND: In people with genetic forms of Alzheimer's disease, such as in Down syndrome and autosomal-dominant Alzheimer's disease, pathological changes specific to Alzheimer's disease (ie, accumulation of amyloid and tau) occur in the brain at a young age, when comorbidities related to ageing are not present. Studies including these cohorts could, therefore, improve our understanding of the early pathogenesis of Alzheimer's disease and be useful when designing preventive interventions targeted at disease pathology or when planning clinical trials. We compared the magnitude, spatial extent, and temporal ordering of tau spread in people with Down syndrome and autosomal-dominant Alzheimer's disease. METHODS: In this cross-sectional observational study, we included participants (aged ≥25 years) from two cohort studies. First, we collected data from the Dominantly Inherited Alzheimer's Network studies (DIAN-OBS and DIAN-TU), which include carriers of autosomal-dominant Alzheimer's disease genetic mutations and non-carrier familial controls recruited in Australia, Europe, and the USA between 2008 and 2022. Second, we collected data from the Alzheimer Biomarkers Consortium-Down Syndrome study, which includes people with Down syndrome and sibling controls recruited from the UK and USA between 2015 and 2021. Controls from the two studies were combined into a single group of familial controls. All participants had completed structural MRI and tau PET (18F-flortaucipir) imaging. We applied Gaussian mixture modelling to identify regions of high tau PET burden and regions with the earliest changes in tau binding for each cohort separately. We estimated regional tau PET burden as a function of cortical amyloid burden for both cohorts. Finally, we compared the temporal pattern of tau PET burden relative to that of amyloid. FINDINGS: We included 137 people with Down syndrome (mean age 38·5 years [SD 8·2], 74 [54%] male, and 63 [46%] female), 49 individuals with autosomal-dominant Alzheimer's disease (mean age 43·9 years [11·2], 22 [45%] male, and 27 [55%] female), and 85 familial controls, pooled from across both studies (mean age 41·5 years [12·1], 28 [33%] male, and 57 [67%] female), who satisfied the PET quality-control procedure for tau-PET imaging processing. 134 (98%) people with Down syndrome, 44 (90%) with autosomal-dominant Alzheimer's disease, and 77 (91%) controls also completed an amyloid PET scan within 3 years of tau PET imaging. Spatially, tau PET burden was observed most frequently in subcortical and medial temporal regions in people with Down syndrome, and within the medial temporal lobe in people with autosomal-dominant Alzheimer's disease. Across the brain, people with Down syndrome had greater concentrations of tau for a given level of amyloid compared with people with autosomal-dominant Alzheimer's disease. Temporally, increases in tau were more strongly associated with increases in amyloid for people with Down syndrome compared with autosomal-dominant Alzheimer's disease. INTERPRETATION: Although the general progression of amyloid followed by tau is similar for people Down syndrome and people with autosomal-dominant Alzheimer's disease, we found subtle differences in the spatial distribution, timing, and magnitude of the tau burden between these two cohorts. These differences might have important implications; differences in the temporal pattern of tau accumulation might influence the timing of drug administration in clinical trials, whereas differences in the spatial pattern and magnitude of tau burden might affect disease progression. FUNDING: None.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Down Syndrome , Male , Female , Humans , Adult , Alzheimer Disease/genetics , Cross-Sectional Studies , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , Amyloid , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Cognitive Dysfunction/pathology
7.
Alzheimers Dement ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38666355

ABSTRACT

INTRODUCTION: Amyloid beta and tau pathology are the hallmarks of sporadic Alzheimer's disease (AD) and autosomal dominant AD (ADAD). However, Lewy body pathology (LBP) is found in ≈ 50% of AD and ADAD brains. METHODS: Using an α-synuclein seed amplification assay (SAA) in cerebrospinal fluid (CSF) from asymptomatic (n = 26) and symptomatic (n = 27) ADAD mutation carriers, including 12 with known neuropathology, we investigated the timing of occurrence and prevalence of SAA positive reactivity in ADAD in vivo. RESULTS: No asymptomatic participant and only 11% (3/27) of the symptomatic patients tested SAA positive. Neuropathology revealed LBP in 10/12 cases, primarily affecting the amygdala or the olfactory areas. In the latter group, only the individual with diffuse LBP reaching the neocortex showed α-synuclein seeding activity in CSF in vivo. DISCUSSION: Results suggest that in ADAD LBP occurs later than AD pathology and often as amygdala- or olfactory-predominant LBP, for which CSF α-synuclein SAA has low sensitivity. HIGHLIGHTS: Cerebrospinal fluid (CSF) real-time quaking-induced conversion (RT-QuIC) detects misfolded α-synuclein in ≈ 10% of symptomatic autosomal dominant Alzheimer's disease (ADAD) patients. CSF RT-QuIC does not detect α-synuclein seeding activity in asymptomatic mutation carriers. Lewy body pathology (LBP) in ADAD mainly occurs as olfactory only or amygdala-predominant variants. LBP develops late in the disease course in ADAD. CSF α-synuclein RT-QuIC has low sensitivity for focal, low-burden LBP.

8.
JAMA Neurol ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683602

ABSTRACT

Importance: Effects of antiamyloid agents, targeting either fibrillar or soluble monomeric amyloid peptides, on downstream biomarkers in cerebrospinal fluid (CSF) and plasma are largely unknown in dominantly inherited Alzheimer disease (DIAD). Objective: To investigate longitudinal biomarker changes of synaptic dysfunction, neuroinflammation, and neurodegeneration in individuals with DIAD who are receiving antiamyloid treatment. Design, Setting, and Participants: From 2012 to 2019, the Dominantly Inherited Alzheimer Network Trial Unit (DIAN-TU-001) study, a double-blind, placebo-controlled, randomized clinical trial, investigated gantenerumab and solanezumab in DIAD. Carriers of gene variants were assigned 3:1 to either drug or placebo. The present analysis was conducted from April to June 2023. DIAN-TU-001 spans 25 study sites in 7 countries. Biofluids and neuroimaging from carriers of DIAD gene variants in the gantenerumab, solanezumab, and placebo groups were analyzed. Interventions: In 2016, initial dosing of gantenerumab, 225 mg (subcutaneously every 4 weeks) was increased every 8 weeks up to 1200 mg. In 2017, initial dosing of solanezumab, 400 mg (intravenously every 4 weeks) was increased up to 1600 mg every 4 weeks. Main Outcomes and Measures: Longitudinal changes in CSF levels of neurogranin, soluble triggering receptor expressed on myeloid cells 2 (sTREM2), chitinase 3-like 1 protein (YKL-40), glial fibrillary acidic protein (GFAP), neurofilament light protein (NfL), and plasma levels of GFAP and NfL. Results: Of 236 eligible participants screened, 43 were excluded. A total of 142 participants (mean [SD] age, 44 [10] years; 72 female [51%]) were included in the study (gantenerumab, 52 [37%]; solanezumab, 50 [35%]; placebo, 40 [28%]). Relative to placebo, gantenerumab significantly reduced CSF neurogranin level at year 4 (mean [SD] ß = -242.43 [48.04] pg/mL; P < .001); reduced plasma GFAP level at year 1 (mean [SD] ß = -0.02 [0.01] ng/mL; P = .02), year 2 (mean [SD] ß = -0.03 [0.01] ng/mL; P = .002), and year 4 (mean [SD] ß = -0.06 [0.02] ng/mL; P < .001); and increased CSF sTREM2 level at year 2 (mean [SD] ß = 1.12 [0.43] ng/mL; P = .01) and year 4 (mean [SD] ß = 1.06 [0.52] ng/mL; P = .04). Solanezumab significantly increased CSF NfL (log) at year 4 (mean [SD] ß = 0.14 [0.06]; P = .02). Correlation analysis for rates of change found stronger correlations between CSF markers and fluid markers with Pittsburgh compound B positron emission tomography for solanezumab and placebo. Conclusions and Relevance: This randomized clinical trial supports the importance of fibrillar amyloid reduction in multiple AD-related processes of neuroinflammation and neurodegeneration in CSF and plasma in DIAD. Additional studies of antiaggregated amyloid therapies in sporadic AD and DIAD are needed to determine the utility of nonamyloid biomarkers in determining disease modification. Trial Registration: ClinicalTrials.gov Identifier: NCT04623242.

9.
Nat Aging ; 4(5): 694-708, 2024 May.
Article in English | MEDLINE | ID: mdl-38514824

ABSTRACT

Biological staging of individuals with Alzheimer's disease (AD) may improve diagnostic and prognostic workup of dementia in clinical practice and the design of clinical trials. In this study, we used the Subtype and Stage Inference (SuStaIn) algorithm to establish a robust biological staging model for AD using cerebrospinal fluid (CSF) biomarkers. Our analysis involved 426 participants from BioFINDER-2 and was validated in 222 participants from the Knight Alzheimer Disease Research Center cohort. SuStaIn identified a singular biomarker sequence and revealed that five CSF biomarkers effectively constituted a reliable staging model (ordered: Aß42/40, pT217/T217, pT205/T205, MTBR-tau243 and non-phosphorylated mid-region tau). The CSF stages (0-5) demonstrated a correlation with increased abnormalities in other AD-related biomarkers, such as Aß-PET and tau-PET, and aligned with longitudinal biomarker changes reflective of AD progression. Higher CSF stages at baseline were associated with an elevated hazard ratio of clinical decline. This study highlights a common molecular pathway underlying AD pathophysiology across all patients, suggesting that a single CSF collection can accurately indicate the presence of AD pathologies and characterize the stage of disease progression. The proposed staging model has implications for enhancing diagnostic and prognostic assessments in both clinical practice and the design of clinical trials.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Biomarkers , tau Proteins , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/pathology , Alzheimer Disease/diagnosis , Humans , Biomarkers/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Female , Male , Amyloid beta-Peptides/cerebrospinal fluid , Aged , Disease Progression , Peptide Fragments/cerebrospinal fluid , Algorithms , Middle Aged , Positron-Emission Tomography
10.
Brain Commun ; 6(2): fcae081, 2024.
Article in English | MEDLINE | ID: mdl-38505230

ABSTRACT

Alzheimer's disease biomarkers are crucial to understanding disease pathophysiology, aiding accurate diagnosis and identifying target treatments. Although the number of biomarkers continues to grow, the relative utility and uniqueness of each is poorly understood as prior work has typically calculated serial pairwise relationships on only a handful of markers at a time. The present study assessed the cross-sectional relationships among 27 Alzheimer's disease biomarkers simultaneously and determined their ability to predict meaningful clinical outcomes using machine learning. Data were obtained from 527 community-dwelling volunteers enrolled in studies at the Charles F. and Joanne Knight Alzheimer Disease Research Center at Washington University in St Louis. We used hierarchical clustering to group 27 imaging, CSF and plasma measures of amyloid beta, tau [phosphorylated tau (p-tau), total tau t-tau)], neuronal injury and inflammation drawn from MRI, PET, mass-spectrometry assays and immunoassays. Neuropsychological and genetic measures were also included. Random forest-based feature selection identified the strongest predictors of amyloid PET positivity across the entire cohort. Models also predicted cognitive impairment across the entire cohort and in amyloid PET-positive individuals. Four clusters emerged reflecting: core Alzheimer's disease pathology (amyloid and tau), neurodegeneration, AT8 antibody-associated phosphorylated tau sites and neuronal dysfunction. In the entire cohort, CSF p-tau181/Aß40lumi and Aß42/Aß40lumi and mass spectrometry measurements for CSF pT217/T217, pT111/T111, pT231/T231 were the strongest predictors of amyloid PET status. Given their ability to denote individuals on an Alzheimer's disease pathological trajectory, these same markers (CSF pT217/T217, pT111/T111, p-tau/Aß40lumi and t-tau/Aß40lumi) were largely the best predictors of worse cognition in the entire cohort. When restricting analyses to amyloid-positive individuals, the strongest predictors of impaired cognition were tau PET, CSF t-tau/Aß40lumi, p-tau181/Aß40lumi, CSF pT217/217 and pT205/T205. Non-specific CSF measures of neuronal dysfunction and inflammation were poor predictors of amyloid PET and cognitive status. The current work utilized machine learning to understand the interrelationship structure and utility of a large number of biomarkers. The results demonstrate that, although the number of biomarkers has rapidly expanded, many are interrelated and few strongly predict clinical outcomes. Examining the entire corpus of available biomarkers simultaneously provides a meaningful framework to understand Alzheimer's disease pathobiological change as well as insight into which biomarkers may be most useful in Alzheimer's disease clinical practice and trials.

11.
EBioMedicine ; 103: 105080, 2024 May.
Article in English | MEDLINE | ID: mdl-38552342

ABSTRACT

BACKGROUND: Neuroimaging studies often quantify tau burden in standardized brain regions to assess Alzheimer disease (AD) progression. However, this method ignores another key biological process in which tau spreads to additional brain regions. We have developed a metric for calculating the extent tau pathology has spread throughout the brain and evaluate the relationship between this metric and tau burden across early stages of AD. METHODS: 445 cross-sectional participants (aged ≥ 50) who had MRI, amyloid PET, tau PET, and clinical testing were separated into disease-stage groups based on amyloid positivity and cognitive status (older cognitively normal control, preclinical AD, and symptomatic AD). Tau burden and tau spatial spread were calculated for all participants. FINDINGS: We found both tau metrics significantly elevated across increasing disease stages (p < 0.0001) and as a function of increasing amyloid burden for participants with preclinical (p < 0.0001, p = 0.0056) and symptomatic (p = 0.010, p = 0.0021) AD. An interaction was found between tau burden and tau spatial spread when predicting amyloid burden (p = 0.00013). Analyses of slope between tau metrics demonstrated more spread than burden in preclinical AD (ß = 0.59), but then tau burden elevated relative to spread (ß = 0.42) once participants had symptomatic AD, when the tau metrics became highly correlated (R = 0.83). INTERPRETATION: Tau burden and tau spatial spread are both strong biomarkers for early AD but provide unique information, particularly at the preclinical stage. Tau spatial spread may demonstrate earlier changes than tau burden which could have broad impact in clinical trial design. FUNDING: This research was supported by the Knight Alzheimer Disease Research Center (Knight ADRC, NIH grants P30AG066444, P01AG026276, P01AG003991), Dominantly Inherited Alzheimer Network (DIAN, NIH grants U01AG042791, U19AG03243808, R01AG052550-01A1, R01AG05255003), and the Barnes-Jewish Hospital Foundation Willman Scholar Fund.


Subject(s)
Alzheimer Disease , Brain , Magnetic Resonance Imaging , Neuroimaging , tau Proteins , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , tau Proteins/metabolism , Female , Male , Aged , Neuroimaging/methods , Brain/metabolism , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Middle Aged , Cross-Sectional Studies , Aged, 80 and over , Disease Progression , Biomarkers
12.
JAMA Psychiatry ; 81(5): 456-467, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38353984

ABSTRACT

Importance: Brain aging elicits complex neuroanatomical changes influenced by multiple age-related pathologies. Understanding the heterogeneity of structural brain changes in aging may provide insights into preclinical stages of neurodegenerative diseases. Objective: To derive subgroups with common patterns of variation in participants without diagnosed cognitive impairment (WODCI) in a data-driven manner and relate them to genetics, biomedical measures, and cognitive decline trajectories. Design, Setting, and Participants: Data acquisition for this cohort study was performed from 1999 to 2020. Data consolidation and harmonization were conducted from July 2017 to July 2021. Age-specific subgroups of structural brain measures were modeled in 4 decade-long intervals spanning ages 45 to 85 years using a deep learning, semisupervised clustering method leveraging generative adversarial networks. Data were analyzed from July 2021 to February 2023 and were drawn from the Imaging-Based Coordinate System for Aging and Neurodegenerative Diseases (iSTAGING) international consortium. Individuals WODCI at baseline spanning ages 45 to 85 years were included, with greater than 50 000 data time points. Exposures: Individuals WODCI at baseline scan. Main Outcomes and Measures: Three subgroups, consistent across decades, were identified within the WODCI population. Associations with genetics, cardiovascular risk factors (CVRFs), amyloid ß (Aß), and future cognitive decline were assessed. Results: In a sample of 27 402 individuals (mean [SD] age, 63.0 [8.3] years; 15 146 female [55%]) WODCI, 3 subgroups were identified in contrast with the reference group: a typical aging subgroup, A1, with a specific pattern of modest atrophy and white matter hyperintensity (WMH) load, and 2 accelerated aging subgroups, A2 and A3, with characteristics that were more distinct at age 65 years and older. A2 was associated with hypertension, WMH, and vascular disease-related genetic variants and was enriched for Aß positivity (ages ≥65 years) and apolipoprotein E (APOE) ε4 carriers. A3 showed severe, widespread atrophy, moderate presence of CVRFs, and greater cognitive decline. Genetic variants associated with A1 were protective for WMH (rs7209235: mean [SD] B = -0.07 [0.01]; P value = 2.31 × 10-9) and Alzheimer disease (rs72932727: mean [SD] B = 0.1 [0.02]; P value = 6.49 × 10-9), whereas the converse was observed for A2 (rs7209235: mean [SD] B = 0.1 [0.01]; P value = 1.73 × 10-15 and rs72932727: mean [SD] B = -0.09 [0.02]; P value = 4.05 × 10-7, respectively); variants in A3 were associated with regional atrophy (rs167684: mean [SD] B = 0.08 [0.01]; P value = 7.22 × 10-12) and white matter integrity measures (rs1636250: mean [SD] B = 0.06 [0.01]; P value = 4.90 × 10-7). Conclusions and Relevance: The 3 subgroups showed distinct associations with CVRFs, genetics, and subsequent cognitive decline. These subgroups likely reflect multiple underlying neuropathologic processes and affect susceptibility to Alzheimer disease, paving pathways toward patient stratification at early asymptomatic stages and promoting precision medicine in clinical trials and health care.


Subject(s)
Aging , Brain , Humans , Aged , Female , Male , Middle Aged , Aged, 80 and over , Brain/diagnostic imaging , Brain/pathology , Aging/genetics , Aging/physiology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnostic imaging , Magnetic Resonance Imaging , Cohort Studies , Deep Learning
13.
Nat Med ; 30(4): 1085-1095, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382645

ABSTRACT

With the emergence of Alzheimer's disease (AD) disease-modifying therapies, identifying patients who could benefit from these treatments becomes critical. In this study, we evaluated whether a precise blood test could perform as well as established cerebrospinal fluid (CSF) tests in detecting amyloid-ß (Aß) plaques and tau tangles. Plasma %p-tau217 (ratio of phosporylated-tau217 to non-phosphorylated tau) was analyzed by mass spectrometry in the Swedish BioFINDER-2 cohort (n = 1,422) and the US Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC) cohort (n = 337). Matched CSF samples were analyzed with clinically used and FDA-approved automated immunoassays for Aß42/40 and p-tau181/Aß42. The primary and secondary outcomes were detection of brain Aß or tau pathology, respectively, using positron emission tomography (PET) imaging as the reference standard. Main analyses were focused on individuals with cognitive impairment (mild cognitive impairment and mild dementia), which is the target population for available disease-modifying treatments. Plasma %p-tau217 was clinically equivalent to FDA-approved CSF tests in classifying Aß PET status, with an area under the curve (AUC) for both between 0.95 and 0.97. Plasma %p-tau217 was generally superior to CSF tests in classification of tau-PET with AUCs of 0.95-0.98. In cognitively impaired subcohorts (BioFINDER-2: n = 720; Knight ADRC: n = 50), plasma %p-tau217 had an accuracy, a positive predictive value and a negative predictive value of 89-90% for Aß PET and 87-88% for tau PET status, which was clinically equivalent to CSF tests, further improving to 95% using a two-cutoffs approach. Blood plasma %p-tau217 demonstrated performance that was clinically equivalent or superior to clinically used FDA-approved CSF tests in the detection of AD pathology. Use of high-performance blood tests in clinical practice can improve access to accurate AD diagnosis and AD-specific treatments.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , tau Proteins , Biomarkers , Amyloid beta-Peptides/cerebrospinal fluid , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/cerebrospinal fluid , Hematologic Tests , Positron-Emission Tomography
14.
Ann Neurol ; 95(5): 951-965, 2024 May.
Article in English | MEDLINE | ID: mdl-38400792

ABSTRACT

OBJECTIVE: A clock relating amyloid positron emission tomography (PET) to time was used to estimate the timing of biomarker changes in sporadic Alzheimer disease (AD). METHODS: Research participants were included who underwent cerebrospinal fluid (CSF) collection within 2 years of amyloid PET. The ages at amyloid onset and AD symptom onset were estimated for each individual. The timing of change for plasma, CSF, imaging, and cognitive measures was calculated by comparing restricted cubic splines of cross-sectional data from the amyloid PET positive and negative groups. RESULTS: The amyloid PET positive sub-cohort (n = 118) had an average age of 70.4 ± 7.4 years (mean ± standard deviation) and 16% were cognitively impaired. The amyloid PET negative sub-cohort (n = 277) included individuals with low levels of amyloid plaque burden at all scans who were cognitively unimpaired at the time of the scans. Biomarker changes were detected 15-19 years before estimated symptom onset for CSF Aß42/Aß40, plasma Aß42/Aß40, CSF pT217/T217, and amyloid PET; 12-14 years before estimated symptom onset for plasma pT217/T217, CSF neurogranin, CSF SNAP-25, CSF sTREM2, plasma GFAP, and plasma NfL; and 7-9 years before estimated symptom onset for CSF pT205/T205, CSF YKL-40, hippocampal volumes, and cognitive measures. INTERPRETATION: The use of an amyloid clock enabled visualization and analysis of biomarker changes as a function of estimated years from symptom onset in sporadic AD. This study demonstrates that estimated years from symptom onset based on an amyloid clock can be used as a continuous staging measure for sporadic AD and aligns with findings in autosomal dominant AD. ANN NEUROL 2024;95:951-965.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Biomarkers , Positron-Emission Tomography , Humans , Alzheimer Disease/blood , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/diagnosis , Female , Male , Biomarkers/cerebrospinal fluid , Biomarkers/blood , Aged , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/blood , Middle Aged , Peptide Fragments/cerebrospinal fluid , Peptide Fragments/blood , Aged, 80 and over , Cross-Sectional Studies , Time Factors , Age of Onset , Cohort Studies , Disease Progression , Chitinase-3-Like Protein 1/cerebrospinal fluid , Chitinase-3-Like Protein 1/blood , Cognitive Dysfunction/cerebrospinal fluid , Cognitive Dysfunction/blood , Plaque, Amyloid/diagnostic imaging , Plaque, Amyloid/pathology
15.
Neurology ; 102(4): e208013, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38315956

ABSTRACT

BACKGROUND AND OBJECTIVES: Alzheimer disease (AD) is primarily associated with accumulations of amyloid plaques and tau tangles in gray matter, however, it is now acknowledged that neuroinflammation, particularly in white matter (WM), significantly contributes to the development and progression of AD. This study aims to investigate WM neuroinflammation in the continuum of AD and its association with AD pathologies and cognition using diffusion-based neuroinflammation imaging (NII). METHODS: This is a cross-sectional, single-center, retrospective evaluation conducted on an observational study of 310 older research participants who were enrolled in the Knight Alzheimer's Disease Research Center cohort. Hindered water ratio (HR), an index of WM neuroinflammation, was quantified by a noninvasive diffusion MRI method, NII. The alterations of NII-HR were investigated at different AD stages, classified based on CSF concentrations of ß-amyloid (Aß) 42/Aß40 for amyloid and phosphorylated tau181 (p-tau181) for tau. On the voxel and regional levels, the relationship between NII-HR and CSF markers of amyloid, tau, and neuroinflammation were examined, as well as cognition. RESULTS: This cross-sectional study included 310 participants (mean age 67.1 [±9.1] years), with 52 percent being female. Subgroups included 120 individuals (38.7%) with CSF measures of soluble triggering receptor expressed on myeloid cells 2, 80 participants (25.8%) with CSF measures of chitinase-3-like protein 1, and 110 individuals (35.5%) with longitudinal cognitive measures. The study found that cognitively normal individuals with positive CSF Aß42/Aß40 and p-tau181 had higher HR than healthy controls and those with positive CSF Aß42/Aß40 but negative p-tau181. WM tracts with elevated NII-HR in individuals with positive CSF Aß42/Aß40 and p-tau181 were primarily located in the posterior brain regions while those with elevated NII-HR in individuals with positive CSF Aß42/Aß40 and p-tau181 connected the posterior and anterior brain regions. A significant negative correlation between NII-HR and CSF Aß42/Aß40 was found in individuals with positive CSF Aß42/Aß40. Baseline NII-HR correlated with baseline cognitive composite score and predicted longitudinal cognitive decline. DISCUSSION: Those findings suggest that WM neuroinflammation undergoes alterations before the onset of AD clinical symptoms and that it interacts with amyloidosis. This highlights the potential value of noninvasive monitoring of WM neuroinflammation in AD progression and treatment.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , White Matter , Humans , Female , Aged , Male , Alzheimer Disease/pathology , Cross-Sectional Studies , White Matter/diagnostic imaging , White Matter/pathology , Retrospective Studies , tau Proteins , Neuroinflammatory Diseases , Biomarkers , Amyloid beta-Peptides , Peptide Fragments
16.
medRxiv ; 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38260583

ABSTRACT

Background: To date, there is no high throughput proteomic study in the context of Autosomal Dominant Alzheimer's disease (ADAD). Here, we aimed to characterize early CSF proteome changes in ADAD and leverage them as potential biomarkers for disease monitoring and therapeutic strategies. Methods: We utilized Somascan® 7K assay to quantify protein levels in the CSF from 291 mutation carriers (MCs) and 185 non-carriers (NCs). We employed a multi-layer regression model to identify proteins with different pseudo-trajectories between MCs and NCs. We replicated the results using publicly available ADAD datasets as well as proteomic data from sporadic Alzheimer's disease (sAD). To biologically contextualize the results, we performed network and pathway enrichment analyses. Machine learning was applied to create and validate predictive models. Findings: We identified 125 proteins with significantly different pseudo-trajectories between MCs and NCs. Twelve proteins showed changes even before the traditional AD biomarkers (Aß42, tau, ptau). These 125 proteins belong to three different modules that are associated with age at onset: 1) early stage module associated with stress response, glutamate metabolism, and mitochondria damage; 2) the middle stage module, enriched in neuronal death and apoptosis; and 3) the presymptomatic stage module was characterized by changes in microglia, and cell-to-cell communication processes, indicating an attempt of rebuilding and establishing new connections to maintain functionality. Machine learning identified a subset of nine proteins that can differentiate MCs from NCs better than traditional AD biomarkers (AUC>0.89). Interpretation: Our findings comprehensively described early proteomic changes associated with ADAD and captured specific biological processes that happen in the early phases of the disease, fifteen to five years before clinical onset. We identified a small subset of proteins with the potentials to become therapy-monitoring biomarkers of ADAD MCs. Funding: Proteomic data generation was supported by NIH: RF1AG044546.

17.
J Int Neuropsychol Soc ; 30(5): 428-438, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38282413

ABSTRACT

OBJECTIVE: Maintaining attention underlies many aspects of cognition and becomes compromised early in neurodegenerative diseases like Alzheimer's disease (AD). The consistency of maintaining attention can be measured with reaction time (RT) variability. Previous work has focused on measuring such fluctuations during in-clinic testing, but recent developments in remote, smartphone-based cognitive assessments can allow one to test if these fluctuations in attention are evident in naturalistic settings and if they are sensitive to traditional clinical and cognitive markers of AD. METHOD: Three hundred and seventy older adults (aged 75.8 +/- 5.8 years) completed a week of remote daily testing on the Ambulatory Research in Cognition (ARC) smartphone platform and also completed clinical, genetic, and conventional in-clinic cognitive assessments. RT variability was assessed in a brief (20-40 seconds) processing speed task using two different measures of variability, the Coefficient of Variation (CoV) and the Root Mean Squared Successive Difference (RMSSD) of RTs on correct trials. RESULTS: Symptomatic participants showed greater variability compared to cognitively normal participants. When restricted to cognitively normal participants, APOE ε4 carriers exhibited greater variability than noncarriers. Both CoV and RMSSD showed significant, and similar, correlations with several in-clinic cognitive composites. Finally, both RT variability measures significantly mediated the relationship between APOE ε4 status and several in-clinic cognition composites. CONCLUSIONS: Attentional fluctuations over 20-40 seconds assessed in daily life, are sensitive to clinical status and genetic risk for AD. RT variability appears to be an important predictor of cognitive deficits during the preclinical disease stage.


Subject(s)
Alzheimer Disease , Reaction Time , Humans , Alzheimer Disease/physiopathology , Alzheimer Disease/genetics , Aged , Male , Female , Reaction Time/physiology , Aged, 80 and over , Neuropsychological Tests , Apolipoprotein E4/genetics , Smartphone , Attention/physiology
18.
Alzheimers Dement ; 20(3): 2080-2088, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38224146

ABSTRACT

INTRODUCTION: Reversion, or change in cognitive status from impaired to normal, is common in aging and dementia studies, but it remains unclear what factors predict reversion. METHODS: We investigated whether reverters, defined as those who revert from a Clinical Dementia Rating® (CDR®) scale score of 0.5 to CDR 0) differed on cognition and biomarkers from unimpaired participants (always CDR 0) and impaired participants (converted to CDR > 0 and had no reversion events). Models evaluated relationships between biomarker status, apolipoprotein E (APOE) ε4 status, and cognition. Additional models described predictors of reversion and predictors of eventual progression to CDR > 0. RESULTS: CDR reversion was associated with younger age, better cognition, and negative amyloid biomarker status. Reverters that eventually progressed to CDR > 0 had more visits, were older, and were more likely to have an APOE ε4 allele. DISCUSSION: CDR reversion occupies a transitional phase in disease progression between cognitive normality and overt dementia. Reverters may be ideal candidates for secondary prevention Alzheimer's disease (AD) trials. HIGHLIGHTS: Reverters had more longitudinal cognitive decline than those who remained cognitively normal. Predictors of reversion: younger age, better cognition, and negative amyloid biomarker status. Reverting from CDR 0.5 to 0 is a risk factor for future conversion to CDR > 0. CDR reversion may be a transitional phase in Alzheimer's Disease progression. CDR reverters may be ideal for Alzheimer's disease secondary prevention trials.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Alzheimer Disease/psychology , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/genetics , Cognitive Dysfunction/psychology , Cognition , Mental Status and Dementia Tests , Biomarkers , Disease Progression
19.
Nat Commun ; 15(1): 354, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191573

ABSTRACT

Disease heterogeneity has been a critical challenge for precision diagnosis and treatment, especially in neurologic and neuropsychiatric diseases. Many diseases can display multiple distinct brain phenotypes across individuals, potentially reflecting disease subtypes that can be captured using MRI and machine learning methods. However, biological interpretability and treatment relevance are limited if the derived subtypes are not associated with genetic drivers or susceptibility factors. Herein, we describe Gene-SGAN - a multi-view, weakly-supervised deep clustering method - which dissects disease heterogeneity by jointly considering phenotypic and genetic data, thereby conferring genetic correlations to the disease subtypes and associated endophenotypic signatures. We first validate the generalizability, interpretability, and robustness of Gene-SGAN in semi-synthetic experiments. We then demonstrate its application to real multi-site datasets from 28,858 individuals, deriving subtypes of Alzheimer's disease and brain endophenotypes associated with hypertension, from MRI and single nucleotide polymorphism data. Derived brain phenotypes displayed significant differences in neuroanatomical patterns, genetic determinants, biological and clinical biomarkers, indicating potentially distinct underlying neuropathologic processes, genetic drivers, and susceptibility factors. Overall, Gene-SGAN is broadly applicable to disease subtyping and endophenotype discovery, and is herein tested on disease-related, genetically-associated neuroimaging phenotypes.


Subject(s)
Alzheimer Disease , Neuroimaging , Humans , Endophenotypes , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Brain/diagnostic imaging , Cluster Analysis
20.
Neuropsychology ; 38(1): 69-80, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37079810

ABSTRACT

OBJECTIVE: Observational studies on aging and Alzheimer's disease (AD) typically focus on mean-level changes in cognitive performance over relatively long periods of time (years or decades). Additionally, some studies have examined how trial-level fluctuations in speeded reaction time are related to both age and AD. The aim of the current project was to describe patterns of variability across repeated days of testing as a function of AD risk in cognitively normal older adults. METHOD: The current project examined the performance of the Ambulatory Research in Cognition (ARC) smartphone application, a high-frequency remote cognitive assessment paradigm, that administers brief tests of episodic memory, spatial working memory, and processing speed. Bayesian mixed-effects location scale models were used to explore differences in mean cognitive performance and intraindividual variability across 28 repeated sessions over a 1-week assessment interval as function of age and genetic risk of AD, specifically the presence of at least one apolipoprotein E (APOE) ε4 allele. RESULTS: Mean performance on processing speed and working memory was negatively related to age and APOE status. More importantly, e4 carriers exhibited increased session-level variability on a test of processing speed compared to noncarriers. Age and education did not consistently relate to cognitive variability, contrary to expectations. CONCLUSION: Preclinical AD risk, defined as possessing at least one APOE ε4 allele, is not only associated with mean-level performance differences, but also with increases in variability across repeated testing occasions particularly on a test of processing speed. Thus, cognitive variability may serve as an additional and important indicator of AD risk. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Subject(s)
Alzheimer Disease , Humans , Aged , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Alzheimer Disease/complications , Bayes Theorem , Apolipoprotein E4/genetics , Neuropsychological Tests , Cognition , Apolipoproteins E/genetics , Genotype
SELECTION OF CITATIONS
SEARCH DETAIL
...