Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(5): e2313096121, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38261613

ABSTRACT

Ether solvents are suitable for formulating solid-electrolyte interphase (SEI)-less ion-solvent cointercalation electrolytes in graphite for Na-ion and K-ion batteries. However, ether-based electrolytes have been historically perceived to cause exfoliation of graphite and cell failure in Li-ion batteries. In this study, we develop strategies to achieve reversible Li-solvent cointercalation in graphite through combining appropriate Li salts and ether solvents. Specifically, we design 1M LiBF4 1,2-dimethoxyethane (G1), which enables natural graphite to deliver ~91% initial Coulombic efficiency and >88% capacity retention after 400 cycles. We captured the spatial distribution of LiF at various length scales and quantified its heterogeneity. The electrolyte shows self-terminated reactivity on graphite edge planes and results in a grainy, fluorinated pseudo-SEI. The molecular origin of the pseudo-SEI is elucidated by ab initio molecular dynamics (AIMD) simulations. The operando synchrotron analyses further demonstrate the reversible and monotonous phase transformation of cointercalated graphite. Our findings demonstrate the feasibility of Li cointercalation chemistry in graphite for extreme-condition batteries. The work also paves the foundation for understanding and modulating the interphase generated by ether electrolytes in a broad range of electrodes and batteries.

2.
Inorg Chem ; 61(22): 8585-8591, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35613459

ABSTRACT

Metal-organic frameworks (MOFs) have shown great success in aqueous-phase hydrolysis of nerve agents, with some even showing promise in the gas phase. However, both aqueous-phase reactivity and gas-phase reactivity are hindered because of the binding of the hydrolyzed products to the MOF nodes in a stable, bridging configuration, which limits turnover. Single transition-metal atoms in MOFs have been a growing field of interest for catalytic applications, and single atoms have been proposed to prevent the unwanted bridged conformation and increase catalytic turnover. To date, there has been little experimental evidence to support the hypothesis. Herein, we report two copper single atom-modified UiO-66 MOFs for nerve-agent simulant degradation. Despite the capping of highly active Zr4+ nodes with fewer Lewis acidic Cun+ atoms, the reactivity of both CuMOFs approaches that of native UiO-66 under aqueous conditions. Computational studies reveal that the Cu coordination environment impairs product inhibition with respect to the native MOF.


Subject(s)
Metal-Organic Frameworks , Nerve Agents , Organometallic Compounds , Copper , Metal-Organic Frameworks/chemistry , Nerve Agents/chemistry , Phthalic Acids
3.
ACS Appl Mater Interfaces ; 14(6): 8322-8332, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35113516

ABSTRACT

There is an acute need for materials that can store the toxic and highly reactive diborane gas at room temperature. In this work, the interfacial chemistry leading to safe and reversible storage of diborane (B2H6) in the UiO-66-NH2 metal-organic framework (MOF) was investigated via in situ transmission infrared (IR) spectroscopy, temperature-programmed desorption (TPD), and electronic structure calculations. The infrared spectrum of B2H6 adsorbed within UiO-66-NH2 indicates hydrogen bonding with the µ3-OH groups of the MOF nodes and chemisorption at the -NH2 groups of the MOF linkers. The conversion of physisorbed to chemisorbed diborane, as observed through a spectroscopically unique intermediate species, occurred over a broad temperature regime from 80 to 410 K. During B2H6-TPD studies, both the weakly and strongly bound species were found to desorb exclusively as molecular B2H6. Infrared spectroscopic studies, performed during diborane adsorption and reaction, combined with electronic structure calculations, revealed that chemisorption occurred via a reversible dissociation reaction involving a "half-open" B2H6 intermediate and resulted in the formation of two NH2-bound BH3 units, which leave the MOF as B2H6 via recombinative desorption. The close spacing of -NH2 groups in the UiO-66-NH2 MOF is key to enabling high-temperature chemisorptive storage of B2H6, and the spatial arrangement of the amine groups has a significant effect on the dissociation energy profile. This work demonstrates that reversible dissociation of B2H6 on precisely engineered, nucleophile-rich materials represents a promising pathway to diborane stabilization and long-term storage.

4.
Chem Soc Rev ; 50(20): 11530-11558, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34661217

ABSTRACT

The ubiquity of metal-organic frameworks in recent scientific literature underscores their highly versatile nature. MOFs have been developed for use in a wide array of applications, including: sensors, catalysis, separations, drug delivery, and electrochemical processes. Often overlooked in the discussion of MOF-based materials is the mass transport of guest molecules within the pores and channels. Given the wide distribution of pore sizes, linker functionalization, and crystal sizes, molecular diffusion within MOFs can be highly dependent on the MOF-guest system. In this review, we discuss the major factors that govern the mass transport of molecules through MOFs at both the intracrystalline and intercrystalline scale; provide an overview of the experimental and computational methods used to measure guest diffusivity within MOFs; and highlight the relevance of mass transfer in the applications of MOFs in electrochemical systems, separations, and heterogeneous catalysis.

5.
J Phys Chem Lett ; 12(20): 4987-4992, 2021 May 27.
Article in English | MEDLINE | ID: mdl-34015221

ABSTRACT

The interfacial chemistry of diborane (B2H6) with hydroxylated silica was investigated via in situ Fourier-transform infrared spectroscopy and temperature-programmed desorption. During exposure of silica to B2H6 under ultrahigh vacuum conditions, a decline in infrared band intensity assigned to excitation of the interfacial silanol O-H vibration at 3750 cm-1 and the associated appearance of a feature at 3687 cm-1 revealed hydrogen-bonding interactions between B2H6 and interfacial silanol groups. The IR spectrum for silica was completely recovered following desorption of the adsorbates, indicating that interactions between B2H6 and clean silica are reversible, in contrast to other reports on this system. During temperature-programmed desorption of diborane from silica, B2H6 was observed to desorb between 80 and 150 K, evidence for weak interactions between B2H6 and the surface. Electronic-structure calculations revealed that these interactions were due to bifurcated dihydrogen bonds between two terminal B-H groups of the adsorbate and interfacial silanol groups.

6.
ACS Appl Mater Interfaces ; 12(13): 14641-14661, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-31994872

ABSTRACT

The threat of chemical warfare agents (CWAs), assured by their ease of synthesis and effectiveness as a terrorizing weapon, will persist long after the once-tremendous stockpiles in the U.S. and elsewhere are finally destroyed. As such, soldier and civilian protection, battlefield decontamination, and environmental remediation from CWAs remain top national security priorities. New chemical approaches for the fast and complete destruction of CWAs have been an active field of research for many decades, and new technologies have generated immense interest. In particular, our research team and others have shown metal-organic frameworks (MOFs) and polyoxometalates (POMs) to be active for sequestering CWAs and even catalyzing the rapid hydrolysis of agents. In this Forum Article, we highlight recent advancements made in the understanding and evaluation of POMs and Zr-based MOFs as CWA decontamination materials. Specifically, our aim is to bridge the gap between controlled, solution-phase laboratory studies and real-world or battlefield-like conditions by examining agent-material interactions at the gas-solid interface utilizing a multimodal experimental and computational approach. Herein, we report our progress in addressing the following research goals: (1) elucidating molecular-level mechanisms of the adsorption, diffusion, and reaction of CWA and CWA simulants within a series of Zr-based MOFs, such as UiO-66, MOF-808, and NU-1000, and POMs, including Cs8Nb6O19 and (Et2NH2)8[(α-PW11O39Zr(µ-OH)(H2O))2]·7H2O, (2) probing the effects that common ambient gases, such as CO2, SO2, and NO2, have on the efficacy of the MOF and POM materials for CWA destruction, and (3) using CWA simulant results to develop hypotheses for live agent chemistry. Key hypotheses are then tested with targeted live agent studies. Overall, our collaborative effort has provided insight into the fundamental aspects of agent-material interactions and revealed strategies for new catalyst development.

7.
ACS Appl Mater Interfaces ; 12(13): 14721-14738, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-31815428

ABSTRACT

This Review summarizes the recent progress made in the field of chemical threat reduction by utilizing new in situ analytical techniques and combinations thereof to study multifunctional materials designed for capture and decomposition of nerve gases and their simulants. The emphasis is on the use of in situ experiments that simulate realistic operating conditions (solid-gas interface, ambient pressures and temperatures, time-resolved measurements) and advanced synchrotron methods, such as in situ X-ray absorption and scattering methods, a combination thereof with other complementary measurements (e.g., XPS, Raman, DRIFTS, NMR), and theoretical modeling. The examples presented in this Review range from studies of the adsorption and decomposition of nerve agents and their simulants on Zr-based metal organic frameworks to Nb and Zr-based polyoxometalates and metal (hydro)oxide materials. The approaches employed in these studies ultimately demonstrate how advanced synchrotron-based in situ X-ray absorption spectroscopy and diffraction can be exploited to develop an atomic- level understanding of interfacial binding and reaction of chemical warfare agents, which impacts the development of novel filtration media and other protective materials.

8.
J Phys Chem Lett ; 10(9): 2295-2299, 2019 May 02.
Article in English | MEDLINE | ID: mdl-31002759

ABSTRACT

Development of technologies for protection against chemical warfare agents (CWAs) is critically important. Recently, polyoxometalates have attracted attention as potential catalysts for nerve-agent decomposition. Improvement of their effectiveness in real operating conditions requires an atomic-level understanding of CWA decomposition at the gas-solid interface. We investigated decomposition of the nerve agent Sarin and its simulant, dimethyl chlorophosphate (DMCP), by zirconium polytungstate. Using a multimodal approach, we showed that upon DMCP and Sarin exposure the dimeric tungstate undergoes monomerization, making coordinatively unsaturated Zr(IV) centers available, which activate nucleophilic hydrolysis. Further, DMCP is shown to be a good model system of reduced toxicity for studies of CWA deactivation at the gas-solid interface.

9.
Phys Chem Chem Phys ; 21(9): 5078-5085, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30762868

ABSTRACT

The metal-organic framework (MOF), UiO-66, contains Brønsted acidic and Lewis acidic sites that play an important role in sorption, separation, and potential catalytic processes involving small gaseous molecules. As such, studies into the sequestration and separation of CO within UiO-66 provides a fundamental understanding of small gas molecule adsorption within a highly porous, tunable and environmentally stable MOF. Infrared spectroscopic measurements, in combination with density functional theory, were employed to characterize the binding energetics between bridging hydroxyl groups at MOF nodes and the adsorbate, CO. Two unique binding configurations between CO and the µ3-OH groups were identified based on differing stretching vibrations of COads when interacting through the C- and O-atom of the molecule. Variable temperature infrared spectroscopy (VTIR) was employed to attain energetics of CO adsorption (-17 kJ mol-1) and isomerization from the carbonyl to the isocarbonyl configuration (4 kJ mol-1). Results suggest that CO-hydroxyl interactions, while weak in nature, play a critical role in CO adsorption within the confined pore environment of UiO-66.

10.
Chem Sci ; 9(8): 2147-2158, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-29719688

ABSTRACT

The impact of ambient gas molecules (X), NO2, CO2 and SO2 on the structure, stability and decontamination activity of Cs8Nb6O19 polyoxometalate was studied computationally and experimentally. It was found that Cs8Nb6O19 absorbs these molecules more strongly than it adsorbs water and Sarin (GB) and that these interactions hinder nerve agent decontamination. The impacts of diamagnetic CO2 and SO2 molecules on polyoxoniobate Cs8Nb6O19 were fundamentally different from that of NO2 radical. At ambient temperatures, weak coordination of the first NO2 radical to Cs8Nb6O19 conferred partial radical character on the polyoxoniobate and promoted stronger coordination of the second NO2 adsorbent to form a stable diamagnetic Cs8Nb6O19/(NO2)2 species. Moreover, at low temperatures, NO2 radicals formed stable dinitrogen tetraoxide (N2O4) that weakly interacted with Cs8Nb6O19. It was found that both in the absence and presence of ambient gas molecules, GB decontamination by the Cs8Nb6O19 species proceeds via general base hydrolysis involving: (a) the adsorption of water and the nerve agent on Cs8Nb6O19/(X), (b) concerted hydrolysis of a water molecule on a basic oxygen atom of the polyoxoniobate and nucleophilic addition of the nascent OH group to the phosphorus center of Sarin, and (c) rapid reorganization of the formed pentacoordinated-phosphorus intermediate, followed by dissociation of either HF or isopropanol and formation of POM-bound isopropyl methyl phosphonic acid (i-MPA) or methyl phosphonofluoridic acid (MPFA), respectively. The presence of the ambient gas molecules increases the energy of the intermediate stationary points relative to the asymptote of the reactants and slightly increases the hydrolysis barrier. These changes closely correlate with the Cs8Nb6O19-X complexation energy. The most energetically stable intermediates of the GB hydrolysis and decontamination reaction were found to be Cs8Nb6O19/X-MPFA-(i-POH) and Cs8Nb6O19/X-(i-MPA)-HF both in the absence and presence of ambient gas molecules. The high stability of these intermediates is due to, in part, the strong hydrogen bonding between the adsorbates and the protonated [Cs8Nb6O19/X/H]+-core. Desorption of HF or/and (i-POH) and regeneration of the catalyst required deprotonation of the [Cs8Nb6O19/X/H]+-core and protonation of the phosphonic acids i-MPA and MPFA. This catalyst regeneration is shown to be a highly endothermic process, which is the rate-limiting step of the GB hydrolysis and decontamination reaction both in the absence and presence of ambient gas molecules.

11.
Sci Rep ; 7(1): 773, 2017 Apr 10.
Article in English | MEDLINE | ID: mdl-28396583

ABSTRACT

Ambient pressure in situ synchrotron-based spectroscopic techniques have been correlated to illuminate atomic-level details of bond breaking and formation during the hydrolysis of a chemical warfare nerve agent simulant over a polyoxometalate catalyst. Specifically, a Cs8[Nb6O19] polyoxoniobate catalyst has been shown to react readily with dimethyl methylphosphonate (DMMP). The atomic-level transformations of all reactant moieties, the [Nb6O19]8- polyanion, its Cs+ counterions, and the DMMP substrate, were tracked under ambient conditions by a combination of X-ray absorption fine structure spectroscopy, Raman spectroscopy, and X-ray diffraction. Results reveal that the reaction mechanism follows general base (in contrast to specific base) hydrolysis. Together with computational results, the work demonstrates that the ultimate fate of DMMP hydrolysis at the Cs8[Nb6O19] catalyst is strong binding of the (methyl) methylphosphonic acid ((M)MPA) product to the polyanions, which ultimately inhibits catalytic turnover.

12.
J Am Chem Soc ; 139(2): 599-602, 2017 01 18.
Article in English | MEDLINE | ID: mdl-28038315

ABSTRACT

Zr-based metal organic frameworks (MOFs) have been recently shown to be among the fastest catalysts of nerve-agent hydrolysis in solution. We report a detailed study of the adsorption and decomposition of a nerve-agent simulant, dimethyl methylphosphonate (DMMP), on UiO-66, UiO-67, MOF-808, and NU-1000 using synchrotron-based X-ray powder diffraction, X-ray absorption, and infrared spectroscopy, which reveals key aspects of the reaction mechanism. The diffraction measurements indicate that all four MOFs adsorb DMMP (introduced at atmospheric pressures through a flow of helium or air) within the pore space. In addition, the combination of X-ray absorption and infrared spectra suggests direct coordination of DMMP to the Zr6 cores of all MOFs, which ultimately leads to decomposition to phosphonate products. These experimental probes into the mechanism of adsorption and decomposition of chemical warfare agent simulants on Zr-based MOFs open new opportunities in rational design of new and superior decontamination materials.

14.
Chem Soc Rev ; 45(13): 3731-46, 2016 07 07.
Article in English | MEDLINE | ID: mdl-26555710

ABSTRACT

Heterogeneous chemistry of the most important atmospheric oxidants, O3, NO3, and OH, plays a central role in regulating atmospheric gas concentrations, processing aerosols, and aging materials. Recent experimental and computational studies have begun to reveal the detailed reaction mechanisms and kinetics for gas-phase O3, NO3, and OH when they impinge on organic surfaces. Through new research approaches that merge the fields of traditional surface science with atmospheric chemistry, researchers are developing an understanding for how surface structure and functionality affect interfacial chemistry with this class of highly oxidizing pollutants. Together with future research initiatives, these studies will provide a more complete description of atmospheric chemistry and help others more accurately predict the properties of aerosols, the environmental impact of interfacial oxidation, and the concentrations of tropospheric gases.

15.
J Am Chem Soc ; 137(24): 7881-8, 2015 Jun 24.
Article in English | MEDLINE | ID: mdl-26022213

ABSTRACT

The development of new nanoparticles as next-generation diagnostic and therapeutic ("theranostic") drug platforms is an active area of both chemistry and cancer research. Although numerous gadolinium (Gd) containing metallofullerenes as diagnostic magnetic resonance imaging (MRI) contrast agents have been reported, the metallofullerene cage surface, in most cases, consists of negatively charged carboxyl or hydroxyl groups that limit attractive forces with the cellular surface. It has been reported that nanoparticles with a positive charge will bind more efficiently to negatively charged phospholipid bilayer cellular surfaces, and will more readily undergo endocytosis. In this paper, we report the preparation of a new functionalized trimetallic nitride template endohedral metallofullerene (TNT EMF), Gd3N@C80(OH)x(NH2)y, with a cage surface bearing positively charged amino groups (-NH3(+)) and directly compare it with a similar carboxyl and hydroxyl functionalized derivative. This new nanoparticle was characterized by X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), and infrared spectroscopy. It exhibits excellent (1)H MR relaxivity. Previous studies have clearly demonstrated that the cytokine interleukin-13 (IL-13) effectively targets glioblastoma multiforme (GBM) cells, which are known to overexpress IL-13Rα2. We also report that this amino-coated Gd-nanoplatform, when subsequently conjugated with interleukin-13 peptide IL-13-Gd3N@C80(OH)x(NH2)y, exhibits enhanced targeting of U-251 GBM cell lines and can be effectively delivered intravenously in an orthotopic GBM mouse model.


Subject(s)
Contrast Media/chemistry , Fullerenes/chemistry , Gadolinium/chemistry , Glioblastoma/diagnosis , Interleukin-13/chemistry , Nanoparticles/chemistry , Amination , Animals , Cell Line, Tumor , Humans , Magnetic Resonance Imaging/methods , Mice, Nude , Models, Molecular
16.
Audiol Neurootol ; 20(3): 172-82, 2015.
Article in English | MEDLINE | ID: mdl-25872149

ABSTRACT

Inhibition of cochlear N-methyl-D-aspartate (NMDA) receptors with AM-101, a small molecule antagonist delivered by intratympanic injection, represents a novel approach to treat acute tinnitus triggered by glutamate excitotoxicity. An earlier double-blind, randomized, placebo-controlled phase II clinical trial (TACTT0) had demonstrated a significant and dose-dependent improvement in tinnitus triggered by acute acoustic trauma or otitis media from baseline to day 90. A second phase II trial (TACTT1) now sought to evaluate the most appropriate dose regimen for this treatment. Outcomes from the TACTT1 trial showed no significant difference in tinnitus improvement between a single-dose treatment and a dose regimen comprising three doses over 2 weeks. Taken together, three injections over 3 consecutive days showed the best results in the two phase II trials, suggesting that repeated and concentrated inhibition of cochlear NMDA receptors provides best treatment effects, while keeping the procedural impact on patients short.


Subject(s)
Apoptosis Regulatory Proteins/administration & dosage , Tinnitus/drug therapy , Adolescent , Adult , Apoptosis Regulatory Proteins/therapeutic use , Dose-Response Relationship, Drug , Double-Blind Method , Female , Humans , Injection, Intratympanic , Male , Middle Aged , Treatment Outcome , Tympanic Membrane/drug effects , Young Adult
17.
J Phys Chem Lett ; 6(24): 4923-6, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26722703
18.
Phys Chem Chem Phys ; 16(31): 16659-70, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-24995705

ABSTRACT

Interfacial reactions between gas-phase nitrate radicals, a key nighttime atmospheric oxidant, and a model unsaturated organic surface have been investigated to determine the reaction kinetics and probable reaction mechanism. The experimental approach employs in situ reflection-absorption infrared spectroscopy (RAIRS) to monitor bond rupture and formation while a well-characterized effusive flux of NO3 impinges on the organic surface. Model surfaces are created by the spontaneous adsorption of vinyl-terminated alkanethiols (HS(CH2)16CHCH2) onto a polycrystalline gold substrate. The H2C=CH-terminated self-assembled monolayers provide a well-defined surface with the double bond positioned precisely at the gas-surface interface. The surface reaction kinetics obtained from RAIRS revealed that the consumption rate of the terminal vinyl groups is nearly identical to the formation rate of a surface-bound nitrate species and implies that the mechanism is one of direct addition to the vinyl group rather than hydrogen abstraction. Upon nitrate radical collisions with the surface, the initial reaction probability for consumption of carbon-carbon double bonds was determined to be (2.3 ± 0.5) × 10(-3). This reaction probability is approximately two orders of magnitude greater than the probability of ozone reactions on the same surface, which suggests that oxidation of surface-bound vinyl groups by nighttime nitrate radicals may play an important role in atmospheric chemistry despite their relatively low concentration.

19.
Environ Sci Technol ; 48(5): 2706-14, 2014.
Article in English | MEDLINE | ID: mdl-24517376

ABSTRACT

Atmospheric processing of carbonaceous nanoparticles (CNPs) may play an important role in determining their fate and environmental impacts. This work investigates the reaction between aerosolized C60 and atmospherically relevant mixing ratios of O3 at differing levels of humidity. Results indicate that C60 is oxidized by O3 and forms a variety of oxygen-containing functional groups on the aerosol surface, including C60O, C60O2, and C60O3. The pseudo-first-order reaction rate between C60 and O3 ranges from 9 × 10(-6) to 2 × 10(-5) s(-1). The reaction is likely to be limited to the aerosol surface. Exposure to O3 increases the oxidative stress exerted by the C60 aerosols as measured by the dichlorofluorescein acellular assay but not by the uric acid, ascorbic acid, glutathione, or dithiothreitol assays. The initial prevalence of C60O and C60O2 as intermediate products is enhanced at higher humidity, as is the surface oxygen content of the aerosols. These results show that C60 can be oxidized when exposed to O3 under ambient conditions, such as those found in environmental, laboratory, and industrial settings.


Subject(s)
Aerosols/chemistry , Fullerenes/chemistry , Ozone/chemistry , Ascorbic Acid/chemistry , Chemistry Techniques, Analytical , Fluoresceins/chemistry , Glutathione/chemistry , Humidity , Oxidation-Reduction , Oxygen
20.
Rev Sci Instrum ; 85(1): 014101, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24517783

ABSTRACT

A fundamental understanding of the surface chemistry of chemical warfare agents is needed to fully predict the interaction of these toxic molecules with militarily relevant materials, catalysts, and environmental surfaces. For example, rules for predicting the surface chemistry of agents can be applied to the creation of next generation decontaminants, reactive coatings, and protective materials for the warfighter. Here, we describe a multifunctional ultra-high vacuum instrument for conducting comprehensive studies of the adsorption, desorption, and surface chemistry of chemical warfare agents on model and militarily relevant surfaces. The system applies reflection-absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and mass spectrometry to study adsorption and surface reactions of chemical warfare agents. Several novel components have been developed to address the unique safety and sample exposure challenges that accompany the research of these toxic, often very low vapor pressure, compounds. While results of vacuum-based surface science techniques may not necessarily translate directly to environmental processes, learning about the fundamental chemistry will begin to inform scientists about the critical aspects that impact real-world applications.


Subject(s)
Chemical Warfare Agents/chemistry , Chemistry/instrumentation , Equipment Design , Nanoparticles/chemistry , Safety , Silicon Dioxide/chemistry , Surface Properties , Vacuum , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...