Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Front Genet ; 15: 1383609, 2024.
Article in English | MEDLINE | ID: mdl-38706792

ABSTRACT

Background: In sub-Saharan Africa, 80% of poultry production is on smallholder village farms, where chickens are typically reared outdoors in free-ranging conditions. There is limited knowledge on chickens' phenotypic characteristics and genetics under these conditions. Objective: The present is a large-scale study set out to phenotypically characterise the performance of tropically adapted commercial chickens in typical smallholder farm conditions, and to examine the genetic profile of chicken phenotypes associated with growth, meat production, immunity, and survival. Methods: A total of 2,573 T451A dual-purpose Sasso chickens kept outdoors in emulated free-ranging conditions at the poultry facility of the International Livestock Research Institute in Addis Ababa, Ethiopia, were included in the study. The chickens were raised in five equally sized batches and were individually monitored and phenotyped from the age of 56 days for 8 weeks. Individual chicken data collected included weekly body weight, growth rate, body and breast meat weight at slaughter, Newcastle Disease Virus (NDV) titres and intestinal Immunoglobulin A (IgA) levels recorded at the beginning and the end of the period of study, and survival rate during the same period. Genotyping by sequencing was performed on all chickens using a low-coverage and imputation approach. Chicken phenotypes and genotypes were combined in genomic association analyses. Results: We discovered that the chickens were phenotypically diverse, with extensive variance levels observed in all traits. Batch number and sex of the chicken significantly affected the studied phenotypes. Following quality assurance, genotypes consisted of 2.9 million Single Nucleotide Polymorphism markers that were used in the genomic analyses. Results revealed a largely polygenic mode of genetic control of all phenotypic traits. Nevertheless, 15 distinct markers were identified that were significantly associated with growth, carcass traits, NDV titres, IgA levels, and chicken survival. These markers were located in regions harbouring relevant annotated genes. Conclusion: Results suggest that performance of chickens raised under smallholder farm conditions is amenable to genetic improvement and may inform selective breeding programmes for enhanced chicken productivity in sub-Saharan Africa.

2.
Am J Med Genet A ; 194(2): 346-350, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37789430

ABSTRACT

Acyl-CoA-binding domain-containing protein 5-related retinal dystrophy with leukodystrophy (ACBD5) is a peroxisomal disorder due to deficiency of ACBD5. Presenting features include retinal dystrophy, progressive leukodystrophy, and ataxia. Only seven cases of ACBD5-related retinal dystrophy have been reported in the literature to date, including one other case diagnosed in adulthood. Here we report a case with novel compound heterozygous ACBD5 mutations, presenting with the common features of rod monochromatism and progressive leukodystrophy with spasticity and ataxia. Additional novel clinical features included head and neck tremor and ovarian insufficiency. The patient's symptoms were present since infancy, but a diagnosis was only reached in adulthood when whole exome sequencing was performed. This case, which reports two novel mutations and additional clinical manifestations, contributes to the emerging phenotype of ACBD5-related retinal dystrophy with leukodystrophy, and delineation of the natural history and disease progression.


Subject(s)
Primary Ovarian Insufficiency , Retinal Dystrophies , Female , Humans , Mutation , Pedigree , Retinal Dystrophies/diagnosis , Retinal Dystrophies/genetics , Retinal Dystrophies/metabolism , Phenotype , Primary Ovarian Insufficiency/diagnosis , Primary Ovarian Insufficiency/genetics , Ataxia , Membrane Proteins/genetics , Adaptor Proteins, Signal Transducing/genetics
3.
Transplant Cell Ther ; 30(2): 131-142, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37951502

ABSTRACT

The first series of chimeric antigen receptor T (CAR-T) cell therapy products were approved in 2017 to 2019 and have shown remarkable efficacy in both clinical trials and the real-world setting, but at the cost of prolonged patient hospitalization. As the toxicity management protocols were refined, the concept of cellular therapy administered in the outpatient setting gained steam, and single institutions began to perform certain aspects of CAR-T monitoring in the outpatient setting for select patients. However, there are many considerations for a successful outpatient program. In anticipation of increasing use of CAR-T-cell therapy in the outpatient setting as a mechanism to overcome frequent hospital bed shortages and high cost of inpatient care, the American Society for Transplantation and Cellular Therapy convened a group of experts in hematology, oncology, and cellular therapy to provide a comprehensive review of the existing publications on outpatient CAR-T cell therapy, discuss selected ongoing clinical trials of outpatient CAR-T, and describe strategies to optimize safety without compromising efficacy for patients treated and monitored in the outpatient setting.


Subject(s)
Receptors, Chimeric Antigen , Humans , United States , Receptors, Chimeric Antigen/therapeutic use , Outpatients , Immunotherapy, Adoptive/adverse effects , Societies , Cell- and Tissue-Based Therapy
4.
Nutrients ; 15(20)2023 Oct 22.
Article in English | MEDLINE | ID: mdl-37892546

ABSTRACT

Snacking outside main meals may contribute to the high intakes of discretionary foods (i.e., unhealthful foods) among young adults. This study assessed the snacking behaviours of Australian young adults including the contribution of snacking to energy and nutrient intakes, the main foods consumed, and portion sizes. A secondary analysis of the MYMeals study of adults aged 18-30 years who consumed at least one snack food during the recording period (n = 889) was conducted. All food consumed over 3 consecutive days was recorded using a purpose-designed smartphone app. Snack foods contributed 13.2% of energy, 23.4% of total sugars, and 16.2% of saturated fat. Females consumed more energy (13.8% vs. 12.2%, p = 0.007) and total sugars (25.8% vs. 20.8%, p = 0.009), from snacking than males. Fruit (20.2%), chocolate (9.9%), cake-type desserts (8.4%), sweet biscuits (6.1%), and ice-cream-type desserts (5.6%) were the most frequently consumed snacks by young adults. The median portion sizes for the top five snack foods consumed were fruit-106 g (IQR: 73), chocolate-26 g (IQR: 36), cake-95 g (IQR: 88), sweet biscuits-26 g (IQR: 29), and ice cream-75 g (IQR: 42). The current findings may inform population-wide strategies to encourage healthful snacks such as fruit, inform portion control by individuals, and persuade the food industry to reduce the serving size of discretionary snack foods such as cake.


Subject(s)
Meals , Snacks , Male , Female , Humans , Young Adult , Cross-Sectional Studies , Australia , Feeding Behavior , Sugars , Energy Intake , Diet
6.
Front Cell Infect Microbiol ; 13: 1067993, 2023.
Article in English | MEDLINE | ID: mdl-36926515

ABSTRACT

Introduction: Highly pathogenic avian influenza (HPAI) viruses, such as H5N1, continue to pose a serious threat to animal agriculture, wildlife and to public health. Controlling and mitigating this disease in domestic birds requires a better understanding of what makes some species highly susceptible (such as turkey and chicken) while others are highly resistant (such as pigeon and goose). Susceptibility to H5N1 varies both with species and strain; for example, species that are tolerant of most H5N1 strains, such as crows and ducks, have shown high mortality to emerging strains in recent years. Therefore, in this study we aimed to examine and compare the response of these six species, to low pathogenic avian influenza (H9N2) and two strains of H5N1 with differing virulence (clade 2.2 and clade 2.3.2.1) to determine how susceptible and tolerant species respond to HPAI challenge. Methods: Birds were challenged in infection trials and samples (brain, ileum and lung) were collected at three time points post infection. The transcriptomic response of birds was examined using a comparative approach, revealing several important discoveries. Results: We found that susceptible birds had high viral loads and strong neuro-inflammatory response in the brain, which may explain the neurological symptoms and high mortality rates exhibited following H5N1 infection. We discovered differential regulation of genes associated with nerve function in the lung and ileum, with stronger differential regulation in resistant species. This has intriguing implications for the transmission of the virus to the central nervous system (CNS) and may also indicate neuro-immune involvement at the mucosal surfaces. Additionally, we identified delayed timing of the immune response in ducks and crows following infection with the more deadly H5N1 strain, which may account for the higher mortality in these species caused by this strain. Lastly, we identified candidate genes with potential roles in susceptibility/resistance which provide excellent targets for future research. Discussion: This study has helped elucidate the responses underlying susceptibility to H5N1 influenza in avian species, which will be critical in developing sustainable strategies for future control of HPAI in domestic poultry.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Animals , Ducks , Chickens
7.
J Neuroimmunol ; 377: 578061, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36898304

ABSTRACT

Neuroleukemiosis describes peripheral nerve involvement secondary to leukemic infiltration, a rare complication of leukemia with various clinical presentations, leading to diagnostic challenges for hematologists and neurologists. We present two cases of painless progressive mononeuritis multiplex secondary to neuroleukemiosis. A literature review of previously reported cases of neuroleukemiosis was undertaken. Neuroleukemiosis may present as a progressive mononeuritis multiplex. The diagnosis of neuroleukemiosis requires a high index of suspicion and be aided by repeated CSF analysis.


Subject(s)
Leukemia, Myeloid, Acute , Mononeuropathies , Humans , Mononeuropathies/complications , Mononeuropathies/diagnosis , Peripheral Nerves , Leukemic Infiltration/complications , Leukemia, Myeloid, Acute/complications
8.
Vet Res ; 54(1): 12, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36793124

ABSTRACT

Enteroids are miniature self-organising three-dimensional (3D) tissue cultures which replicate much of the complexity of the intestinal epithelium. We recently developed an apical-out leukocyte-containing chicken enteroid model providing a novel physiologically relevant in vitro tool to explore host-pathogen interactions in the avian gut. However, the replicate consistency and culture stability have not yet been fully explored at the transcript level. In addition, causes for the inability to passage apical-out enteroids were not determined. Here we report the transcriptional profiling of chicken embryonic intestinal villi and chicken enteroid cultures using bulk RNA-seq. Comparison of the transcriptomes of biological and technical replicate enteroid cultures confirmed their high level of reproducibility. Detailed analysis of cell subpopulation and function markers revealed that the mature enteroids differentiate from late embryonic intestinal villi to recapitulate many digestive, immune and gut-barrier functions present in the avian intestine. These transcriptomic results demonstrate that the chicken enteroid cultures are highly reproducible, and within the first week of culture they morphologically mature to appear similar to the in vivo intestine, therefore representing a physiologically-relevant in vitro model of the chicken intestine.


Subject(s)
Chickens , Intestinal Mucosa , Animals , Chickens/genetics , Reproducibility of Results , Gene Expression Profiling/veterinary
9.
PLoS One ; 17(12): e0278603, 2022.
Article in English | MEDLINE | ID: mdl-36454924

ABSTRACT

Pseudogymnoascus destructans is a fungal pathogen responsible for a deadly disease among North American bats known as white-nose syndrome (WNS). Since detection of WNS in the United States in 2006, its rapid spread and high mortality has challenged development of treatment and prevention methods, a significant objective for wildlife management agencies. In an effort to mitigate precipitous declines in bat populations due to WNS, we have developed and implemented a multi-year mitigation strategy at Black Diamond Tunnel (BDT), Georgia, singly known as one of the most substantial winter colony sites for tricolored bats (Perimyotis subflavus), with pre-WNS abundance exceeding 5000 individuals. Our mitigation approach involved in situ treatment of bats at the colony level through aerosol distribution of antifungal volatile organic compounds (VOCs) that demonstrated an in vitro ability to inhibit P. destructans conidia germination and mycelial growth through contact-independent exposure. The VOCs evaluated have been identified from microbes inhabiting naturally-occurring fungistatic soils and endophytic fungi. These VOCs are of low toxicity to mammals and have been observed to elicit antagonism of P. destructans at low gaseous concentrations. Cumulatively, our observations resolved no detrimental impact on bat behavior or health, yet indicated a potential for attenuation of WNS related declines at BDT and demonstrated the feasibility of this novel disease management approach.


Subject(s)
Chiroptera , Volatile Organic Compounds , Humans , Animals , Volatile Organic Compounds/pharmacology , Antifungal Agents/pharmacology , Nose , Syndrome
10.
Pathogens ; 11(11)2022 Nov 13.
Article in English | MEDLINE | ID: mdl-36422592

ABSTRACT

Despite the successful control of highly contagious tumorigenic Marek's disease (MD) by vaccination, a continuous increase in MD virus (MDV) virulence over recent decades has put emphasis on the development of more MD-resistant chickens. The cell types and genes involved in resistance therefore need to be recognized. The virus is primarily lymphotropic, but research should also focus on innate immunity, as innate immune cells are among the first to encounter MDV. Our previous study on MDV-macrophage interaction revealed significant differences between MHC-congenic lines 61 (MD-resistant) and 72 (MD-susceptible). To investigate the role of dendritic cells (DCs) in MD resistance, bone-marrow-derived DCs from these lines were infected with MDV in vitro. They were then characterized by cell sorting, and the respective transcriptomes analysed by RNA-seq. The differential expression (DE) of genes revealed a strong immune activation in DCs of the susceptible line, although an inherent immune supremacy was shown by the resistant line, including a significant expression of tumour-suppressor miRNA, gga-mir-124a, in line 61 control birds. Enrichment analysis of DE genes revealed high expression of an oncogenic transcription factor, AP-1, in the susceptible line following MDV challenge. This research highlights genes and pathways that may play a role in DCs in determining resistance or susceptibility to MDV infection.

12.
Front Immunol ; 12: 653085, 2021.
Article in English | MEDLINE | ID: mdl-33841436

ABSTRACT

Eimeria maxima is a common cause of coccidiosis in chickens, a disease that has a huge economic impact on poultry production. Knowledge of immunity to E. maxima and the specific mechanisms that contribute to differing levels of resistance observed between chicken breeds and between congenic lines derived from a single breed of chickens is required. This study aimed to define differences in the kinetics of the immune response of two inbred lines of White Leghorn chickens that exhibit differential resistance (line C.B12) or susceptibility (line 15I) to infection by E. maxima. Line C.B12 and 15I chickens were infected with E. maxima and transcriptome analysis of jejunal tissue was performed at 2, 4, 6 and 8 days post-infection (dpi). RNA-Seq analysis revealed differences in the rapidity and magnitude of cytokine transcription responses post-infection between the two lines. In particular, IFN-γ and IL-10 transcript expression increased in the jejunum earlier in line C.B12 (at 4 dpi) compared to line 15I (at 6 dpi). Line C.B12 chickens exhibited increases of IFNG and IL10 mRNA in the jejunum at 4 dpi, whereas in line 15I transcription was delayed but increased to a greater extent. RT-qPCR and ELISAs confirmed the results of the transcriptomic study. Higher serum IL-10 correlated strongly with higher E. maxima replication in line 15I compared to line C.B12 chickens. Overall, the findings suggest early induction of the IFN-γ and IL-10 responses, as well as immune-related genes including IL21 at 4 dpi identified by RNA-Seq, may be key to resistance to E. maxima.


Subject(s)
Chickens/immunology , Coccidiosis/veterinary , Disease Susceptibility/immunology , Eimeria/immunology , Poultry Diseases/immunology , Animals , Chickens/parasitology , Coccidiosis/immunology , Coccidiosis/parasitology , Coccidiosis/pathology , Gene Expression Regulation/immunology , Interferon-gamma/genetics , Interleukin-10/genetics , Interleukins/genetics , Jejunum/immunology , Jejunum/parasitology , Jejunum/pathology , Poultry Diseases/parasitology , Poultry Diseases/pathology , RNA-Seq
13.
Conserv Biol ; 35(5): 1586-1597, 2021 10.
Article in English | MEDLINE | ID: mdl-33877716

ABSTRACT

Assessing the scope and severity of threats is necessary for evaluating impacts on populations to inform conservation planning. Quantitative threat assessment often requires monitoring programs that provide reliable data over relevant spatial and temporal scales, yet such programs can be difficult to justify until there is an apparent stressor. Leveraging efforts of wildlife management agencies to record winter counts of hibernating bats, we collated data for 5 species from over 200 sites across 27 U.S. states and 2 Canadian provinces from 1995 to 2018 to determine the impact of white-nose syndrome (WNS), a deadly disease of hibernating bats. We estimated declines of winter counts of bat colonies at sites where the invasive fungus that causes WNS (Pseudogymnoascus destructans) had been detected to assess the threat impact of WNS. Three species undergoing species status assessment by the U.S. Fish and Wildlife Service (Myotis septentrionalis, Myotis lucifugus, and Perimyotis subflavus) declined by more than 90%, which warrants classifying the severity of the WNS threat as extreme based on criteria used by NatureServe. The scope of the WNS threat as defined by NatureServe criteria was large (36% of Myotis lucifugus range) to pervasive (79% of Myotis septentrionalis range) for these species. Declines for 2 other species (Myotis sodalis and Eptesicus fuscus) were less severe but still qualified as moderate to serious based on NatureServe criteria. Data-sharing across jurisdictions provided a comprehensive evaluation of scope and severity of the threat of WNS and indicated regional differences that can inform response efforts at international, national, and state or provincial jurisdictions. We assessed the threat impact of an emerging infectious disease by uniting monitoring efforts across jurisdictional boundaries and demonstrated the importance of coordinated monitoring programs, such as the North American Bat Monitoring Program (NABat), for data-driven conservation assessments and planning.


Alcance y Severidad del Síndrome de Nariz Blanca en los Murciélagos Hibernando en América del Norte Resumen La evaluación del alcance y la severidad de las amenazas es necesaria para los análisis de impacto sobre las poblaciones que se usan para orientar a la planeación de la conservación. La evaluación cuantitativa de amenazas con frecuencia requiere de programas de monitoreo que proporcionen datos confiables en escalas espaciales y temporales, aunque dichos programas pueden ser difíciles de justificar hasta que exista un estresante aparente. Gracias a una movilización de esfuerzos de las agencias de manejo de fauna para registrar los conteos invernales de murciélagos hibernadores, recopilamos datos para cinco especies en más de 200 sitios a lo largos de 27 estados de EUA y dos provincias canadienses entre 1995 y 2018 para determinar el impacto del síndrome de nariz blanca (SNB), una enfermedad mortal de los murciélagos hibernadores. Estimamos declinaciones en los conteos invernales de las colonias de murciélagos en sitios en donde el hongo invasivo que ocasiona el SNB (Pseudogymnoascus destructans) había sido detectado para evaluar el impacto de amenaza del SNB. Tres especies que se encuentran bajo valoración por parte del Servicio de Pesca y Vida Silvestre de los EUA (Myotis septentrionalis, Myotis lucifugus y Perimyotis subflavus) tuvieron una declinación de más del 90%, lo que justifica la clasificación de la severidad de la amenaza del SNB como extrema con base en el criterio usado por NatureServe. El alcance de la amenaza del SNB definido por el criterio de NatureServe fue desde amplio (36% de la distribución de Myotis lucifugus) hasta dominante (79% de la distribución de Myotis septentrionalis) para estas especies. Las declinaciones de otras dos especies (Myotis sodalis y Eptesicus fuscus) fueron menos severas, pero de igual manera quedaron clasificadas desde moderada hasta seria con base en los criterios de NatureServe. El intercambio de datos entre las jurisdicciones proporcionó una evaluación completa del alcance y la severidad de la amenaza del SNB e indicó las diferencias regionales que pueden guiar a los esfuerzos de respuesta realizados en las jurisdicciones internacionales, nacionales, estatales o provinciales. Evaluamos el impacto de amenaza de una enfermedad infecciosa emergente mediante la combinación de los esfuerzos de monitoreo que sobrepasan fronteras jurisdiccionales y demostramos la importancia que tienen para la planeación y la evaluación basadas en datos de la conservación los programas de monitoreo coordinados, como el Programa de Monitoreo de los Murciélagos Norteamericanos (NABat).


Subject(s)
Chiroptera , Hibernation , Animals , Ascomycota , Canada , Conservation of Natural Resources , North America
14.
Commun Biol ; 4(1): 377, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33742093

ABSTRACT

Mammalian three-dimensional (3D) enteroids mirror in vivo intestinal organisation and are powerful tools to investigate intestinal cell biology and host-pathogen interactions. We have developed complex multilobulated 3D chicken enteroids from intestinal embryonic villi and adult crypts. These avian enteroids develop optimally in suspension without the structural support required to produce mammalian enteroids, resulting in an inside-out enteroid conformation with media-facing apical brush borders. Histological and transcriptional analyses show these enteroids comprise of differentiated intestinal epithelial cells bound by cell-cell junctions, and notably, include intraepithelial leukocytes and an inner core of lamina propria leukocytes. The advantageous polarisation of these enteroids has enabled infection of the epithelial apical surface with Salmonella Typhimurium, influenza A virus and Eimeria tenella without the need for micro-injection. We have created a comprehensive model of the chicken intestine which has the potential to explore epithelial and leukocyte interactions and responses in host-pathogen, food science and pharmaceutical research.


Subject(s)
Eimeria tenella/pathogenicity , Epithelial Cells , Influenza A virus/pathogenicity , Intestinal Mucosa , Leukocytes , Salmonella typhimurium/pathogenicity , Animals , Cells, Cultured , Cellular Microenvironment , Chickens , Eimeria tenella/immunology , Epithelial Cells/immunology , Epithelial Cells/microbiology , Epithelial Cells/parasitology , Epithelial Cells/virology , Host-Pathogen Interactions , Influenza A virus/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/parasitology , Intestinal Mucosa/virology , Leukocytes/immunology , Leukocytes/microbiology , Leukocytes/parasitology , Leukocytes/virology , Mice, Inbred C57BL , Organoids , Permeability , Phagocytosis , Phenotype , Quail , Salmonella typhimurium/immunology
15.
Semin Oncol Nurs ; 36(3): 151018, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32430212

ABSTRACT

OBJECTIVES: Objectives include review of existing benchmarks and nurse-sensitive indicators relevant to the ambulatory care setting. Applying the data to existing ambulatory staffing models with consideration of multiple clinic settings that include medical oncology, infusion, and stem cell transplant clinics. And to describe key considerations needed to optimize oncology care efficiently with an acuity-based staffing model. DATA SOURCES: Published literature indexed in PubMed, CINAHL, textbooks. CONCLUSION: In today's complex oncology environment, optimization and utilization of outpatient facilities is essential in providing high-quality care and improving satisfaction of patients as well as providers and staff. IMPLICATIONS FOR NURSING PRACTICE: Nurse leaders should utilize benchmarking data to ensure staffing levels are appropriate, given the size and scope of their facility. Staff nurses should be engaged to ensure that acuity tools are developed in accordance with their experiences and perceptions of patient care.


Subject(s)
Medical Oncology/standards , Oncology Nursing/organization & administration , Personnel Staffing and Scheduling/organization & administration , Workforce/standards , Ambulatory Care Facilities/organization & administration , Benchmarking , Humans
16.
BMC Biol ; 18(1): 14, 2020 02 12.
Article in English | MEDLINE | ID: mdl-32050986

ABSTRACT

BACKGROUND: The Japanese quail (Coturnix japonica) is a popular domestic poultry species and an increasingly significant model species in avian developmental, behavioural and disease research. RESULTS: We have produced a high-quality quail genome sequence, spanning 0.93 Gb assigned to 33 chromosomes. In terms of contiguity, assembly statistics, gene content and chromosomal organisation, the quail genome shows high similarity to the chicken genome. We demonstrate the utility of this genome through three diverse applications. First, we identify selection signatures and candidate genes associated with social behaviour in the quail genome, an important agricultural and domestication trait. Second, we investigate the effects and interaction of photoperiod and temperature on the transcriptome of the quail medial basal hypothalamus, revealing key mechanisms of photoperiodism. Finally, we investigate the response of quail to H5N1 influenza infection. In quail lung, many critical immune genes and pathways were downregulated after H5N1 infection, and this may be key to the susceptibility of quail to H5N1. CONCLUSIONS: We have produced a high-quality genome of the quail which will facilitate further studies into diverse research questions using the quail as a model avian species.


Subject(s)
Coturnix/genetics , Genome , Life History Traits , Poultry Diseases/genetics , Social Behavior , Animals , Seasons
18.
Front Immunol ; 10: 3055, 2019.
Article in English | MEDLINE | ID: mdl-31998322

ABSTRACT

Avian pathogenic Escherichia coli (APEC) cause severe respiratory and systemic disease in chickens, commonly termed colibacillosis. Early immune responses after initial infection are highly important for the outcome of the infection. In this study, the early interactions between GFP-expressing APEC strains of serotypes O1:K1:H7 and O2:K1:H5 and phagocytic cells in the lung of CSF1R-reporter transgenic chickens were investigated. CSF1R-reporter transgenic chickens express fluorescent protein under the control of elements of the CSF1R promoter and enhancer, such that cells of the myeloid lineage can be visualized in situ and sorted. Chickens were separately inoculated with APEC strains expressing GFP and culled 6 h post-infection. Flow cytometric analysis was performed to phenotype and sort the cells that harbored bacteria in the lung, and the response of the sorted cells was defined by transcriptomic analysis. Both APEC strains were mainly detected in CSF1R-transgeneneg (CSF1R-tgneg) and CSF1R-tglow MHC IIneg MRC1L-Bneg cells and low numbers of APEC were detected in CSF1R-tghigh MHC IIpos MRC1L-Bpos cells. Transcriptomic and flow cytometric analysis identified the APECposCSF1R-tgneg and CSF1R-tglow cells as heterophils and the APECposCSF1R-tghigh cells as macrophages and dendritic cells. Both APEC strains induced strong inflammatory responses, however in both CSF1R-tgneg/low and CSF1R-tghigh cells, many immune related pathways were repressed to a greater extent or less activated in birds inoculated with APEC O2-GFP compared to APEC O1-GFP inoculated birds. Comparison of the immune pathways revealed the aryl hydrocarbon receptor (AhR) pathway, IL17 and STAT3 signaling, heterophil recruitment pathways and the acute phase response, are modulated particularly post-APEC O2-GFP inoculation. In contrast to in vivo data, APEC O2-GFP was more invasive in CSF1R-tghigh cells in vitro than APEC O1-GFP and had higher survival rates for up to 6 h post-infection. Our data indicate significant differences in the responses induced by APEC strains of prevalent serotypes, with important implications for the design and interpretation of future studies. Moreover, we show that bacterial invasion and survival in phagocyte populations in vitro is not predictive of events in the chicken lung.


Subject(s)
Chickens/immunology , Escherichia coli/immunology , Granulocytes/immunology , Immunomodulation/immunology , Lung/immunology , Macrophages/immunology , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Animals , Animals, Genetically Modified/immunology , Animals, Genetically Modified/microbiology , Chickens/microbiology , Escherichia coli Infections/immunology , Granulocytes/microbiology , Lung/microbiology , Macrophages/microbiology , Phagocytes/immunology , Phagocytes/microbiology , Poultry Diseases/immunology , Poultry Diseases/microbiology , Signal Transduction/immunology , Virulence/immunology , Virulence Factors/immunology
19.
Nat Genet ; 50(8): 1102-1111, 2018 08.
Article in English | MEDLINE | ID: mdl-29967444

ABSTRACT

The koala, the only extant species of the marsupial family Phascolarctidae, is classified as 'vulnerable' due to habitat loss and widespread disease. We sequenced the koala genome, producing a complete and contiguous marsupial reference genome, including centromeres. We reveal that the koala's ability to detoxify eucalypt foliage may be due to expansions within a cytochrome P450 gene family, and its ability to smell, taste and moderate ingestion of plant secondary metabolites may be due to expansions in the vomeronasal and taste receptors. We characterized novel lactation proteins that protect young in the pouch and annotated immune genes important for response to chlamydial disease. Historical demography showed a substantial population crash coincident with the decline of Australian megafauna, while contemporary populations had biogeographic boundaries and increased inbreeding in populations affected by historic translocations. We identified genetically diverse populations that require habitat corridors and instituting of translocation programs to aid the koala's survival in the wild.


Subject(s)
Adaptation, Physiological/genetics , Phascolarctidae/genetics , Animals , Australia , Chlamydia Infections/genetics , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Female , Genome , Molecular Sequence Annotation/methods , Phascolarctidae/metabolism , Translocation, Genetic
20.
Immunogenetics ; 70(5): 327-336, 2018 05.
Article in English | MEDLINE | ID: mdl-29159447

ABSTRACT

Bandicoots are omnivorous marsupials of the order Peramelemorphia. Conservation concerns and their unique biological characteristics suggest peramelomorphs are worthy research subjects, but knowledge of their genetics and immunology has lagged behind that of other high-profile marsupials. Here, we characterise the transcriptome of the long-nose bandicoot (Perameles nasuta), the first high-throughput data set from any peramelomorph. We investigate the immune gene repertoire of the bandicoot, with a focus on key immune gene families, and compare to previously characterised marsupial and mammalian species. We find that the immune gene complement in bandicoot is often conserved with respect to other marsupials; however, the diversity of expressed transcripts in several key families, such as major histocompatibility complex, T cell receptor µ and natural killer cell receptors, appears greater in the bandicoot than other Australian marsupials, including devil and koala. This transcriptome is an important first step for future studies of bandicoots and the bilby, allowing for population level analysis and construction of bandicoot-specific immunological reagents and assays. Such studies will be critical to understanding the immunology and physiology of Peramelemorphia and to inform the conservation of these unique marsupials.


Subject(s)
Genome , Major Histocompatibility Complex/genetics , Marsupialia/genetics , Receptors, Antigen, T-Cell/genetics , Receptors, Natural Killer Cell/genetics , Transcriptome , Animals , Gene Expression Profiling , Major Histocompatibility Complex/immunology , Male , Phylogeny , Receptors, Antigen, T-Cell/immunology , Receptors, Natural Killer Cell/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...