Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Healthc Mater ; : e2304374, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075814

ABSTRACT

During metastasis, circulating tumor cells (CTCs) can travel in the bloodstream as individual cells or clusters, associated with fibrin and platelets. Clusters have a higher metastatic potential due to their increased ability to withstand shear stress and arrest in small vessels. Moreover, CTC-platelet interaction protects CTCs from shear stress and immune detection. The objective of this project is to develop a fibrinolytic platelet system to leverage platelet-CTC interactions and dissociate CTC clusters. For this approach, tissue plasminogen activator (tPA) is loaded onto two modified platelet systems: platelet Decoys and lyophilized platelets. The activities of the systems are characterized using a Förster Resonance Energy Transfer-based assay and an angiogenic assay. Furthermore, the ability of the system to dissociate cancer cell clusters in vitro is assessed using light transmission aggregometry. The data demonstrates that the fibrinolytic platelets can maintain tPA activity, interact with CTCs, and dissociate cancer cell clusters. Finally, fibrinolytic platelets are assessed in vivo, demonstrating a decreased tumor load and increased survival with tPA-Decoy treatment, which is selected as the optimal treatment based on favorable in vitro results and in vivo trials. Therefore, this fibrinolytic platelet approach is a promising method for leveraging platelet-CTC interactions to disperse CTC clusters and reduce metastasis.

2.
Biochim Biophys Acta Rev Cancer ; 1877(5): 188770, 2022 09.
Article in English | MEDLINE | ID: mdl-35926688

ABSTRACT

The interaction between circulating tumor cells and platelets is a key factor in cancer metastasis. These interactions, driven by a variety of receptors, support circulating tumor cells by protecting them from immune detection, cushioning them from shear stress, and promoting their arrest at the endothelium. Additionally, platelets have been shown to accumulate in the primary tumors, promoting tumor growth and angiogenesis by releasing growth factors. Furthermore, tumor cells can interact with platelets by inducing aggregation, which further protects cancer cells. However, the platelet cancer cell interplay also offers new approaches to develop targeted therapies. The accumulation of platelets in tumors has successfully been leveraged to deliver chemotherapeutics and imaging agents. Likewise, these platelet-based interactions have been utilized to target cancer cells in circulation. Although these current systems have limitations including drug loading and storage, leveraging platelet-cancer cell interactions to effectively target circulating tumor cells and tumors shows great promise for future cancer treatments.


Subject(s)
Blood Platelets , Neoplastic Cells, Circulating , Blood Platelets/metabolism , Blood Platelets/pathology , Cell Communication , Humans , Neoplastic Cells, Circulating/metabolism , Neovascularization, Pathologic/pathology
3.
Small ; 17(1): e2004945, 2021 01.
Article in English | MEDLINE | ID: mdl-33284518

ABSTRACT

Iron oxide nanoparticles are developed for various biomedical applications, however, there is limited understanding regarding their effects and toxicity on blood components. The particles traveling in circulation inevitably interact with blood cells and plasma proteins and may interfere with hemostasis. Specifically, this study focuses on the influence of superparamagnetic iron oxide nanoparticles (SPIONs) coated with a biocompatible polymer, polyvinyl alcohol (PVA), on platelet function. Here, engineered SPIONs that are functionalized with various PVA coatings to provide these particles with different surface charges and polymer packing are described. These formulations are assessed for any interference with human platelet functions and coagulation, ex vivo. Positively charged SPIONs induce a significant change in platelet GPIIb-IIIa conformation, indicative of platelet activation at the dose of 500 µg mL-1 . Remarkably, engineered PVA(polyvinyl alcohol)-SPIONs all display a robust dose-dependent anti-platelet effect on platelet aggregation, regardless of the PVA charge and molecular weight. After assessing hypotheses involving SPION-induced steric hindrance in platelet-platelet bridging, as well as protein corona involvement in the antiplatelet effect, the study concludes that the presence of PVA-SPIONs induces fibrinogen conformational change, which correlates with the observed dose-dependent anti-platelet effect.


Subject(s)
Magnetite Nanoparticles , Protein Corona , Ferric Compounds , Fibrinogen , Humans , Magnetic Iron Oxide Nanoparticles , Polyvinyl Alcohol
SELECTION OF CITATIONS
SEARCH DETAIL