Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 10: 939, 2019.
Article in English | MEDLINE | ID: mdl-31555199

ABSTRACT

Objective: To characterize the clinical, EEG, and neuroimaging profiles of transient epileptic amnesia (TEA). Methods: We performed a retrospective analysis of patients diagnosed with TEA at the Mayo Clinic Minnesota from January 1, 1998 to September 21, 2017. Diagnostic criteria included the presence of recurrent episodes of transient amnesia with preservation of other cognitive functions and evidence for epilepsy [epileptiform abnormalities on EEG, clinical features of seizures, or symptomatic response to anti-seizure medications (ASMs)]. Results: Nineteen patients were identified (14 men, 5 women) with median onset age 66 years and median time to diagnosis 2 years. Thirteen patients (68%) reported persistent cognitive/behavioral symptoms, including 4 (21%) for whom these were the chief presenting complaints. EEG revealed epileptiform abnormalities involving the frontal and/or temporal regions in 12/19 individuals (63%), including activation during sleep in all of these cases. In numerous cases, sleep and prolonged EEG evaluations identified abnormalities not previously seen on shorter or awake-state studies. Brain MRI revealed focal abnormalities in only 4/19 cases (21%). FDG-PET identified focal hypometabolism in 2/8 cases where it was performed, both involving the frontal and/or temporal regions. Anti-seizure therapy, most often with a single agent, resulted in improvement (reduction in spell frequency and/or subjective improvement in interictal cognitive/behavioral complaints) in all 17 cases with available follow-up. Conclusions: TEA is a treatable cause of amnestic spells in older adults. This syndrome is frequently associated with persistent interictal cognitive/behavioral symptoms and thus can be mistaken for common mimics. In the appropriate clinical context, our findings support the use of early prolonged EEG with emphasis on sleep monitoring as a key diagnostic tool. FDG-PET may also complement MRI in distinguishing TEA from neurodegenerative disease when suspected.

2.
Pharmacol Res Perspect ; 2(3): e00037, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24855564

ABSTRACT

Fibrinogen is a secreted glycoprotein that is synthesized in the liver, although recent in situ hybridization data support its expression in the brain. It is involved in blood clotting and is released in the brain upon injury. Here, we report changes in the extracellular levels of fibrinogen α-chain-derived peptides in the brain after injections of saline and morphine. More specifically, in order to assess hippocampus-related working memory, an approach pairing in vivo microdialysis with mass spectrometry was used to characterize extracellular peptide release from the hippocampus of rats in response to saline or morphine injection coupled with a spontaneous alternation task. Two fibrinopeptide A-related peptides derived from the fibrinogen α-chain-fibrinopeptide A (ADTGTTSEFIEAGGDIR) and a fibrinopeptide A-derived peptide (DTGTTSEFIEAGGDIR)-were shown to be consistently elevated in the hippocampal microdialysate. Fibrinopeptide A was significantly upregulated in rats exposed to morphine and spontaneous alternation testing compared with rats exposed to saline and spontaneous alternation testing (P < 0.001), morphine alone (P < 0.01), or saline alone (P < 0.01), respectively. The increase in fibrinopeptide A in rats subjected to morphine and a memory task suggests that a complex interaction between fibrinogen and morphine takes place in the hippocampus.

3.
Brain Res ; 1139: 117-25, 2007 Mar 30.
Article in English | MEDLINE | ID: mdl-17292869

ABSTRACT

Sensory signal transduction of the inner ear afferent neurons and hair cells (HCs) requires numerous ionic conductances. The KCNQ4 voltage-gated M-type potassium channel is thought to set the resting membrane potential in cochlear HCs. Here we describe the spatiotemporal expression patterns of Kcnq4 and the associated alternative splice forms in the HCs of vestibular labyrinth. Whole mount immunodetection, qualitative and quantitative RT-PCR were performed to characterize the expression patterns of Kcnq4 transcripts and proteins. A topographical expression and upregulation of Kcnq4 during development was observed and indicated that Kcnq4 is not restricted to either a specific vestibular structure or cell type, but is present in afferent calyxes, vestibular ganglion neurons, and both type I and type II HCs. Of the four alternative splice variants, Kcnq4_v1 transcripts were the predominant form in the HCs, while Kcnq4_v3 was the major variant in the vestibular neurons. Differential quantitative expression of Kcnq4_v1 and Kcnq4_v3 were respectively detected in the striolar and extra-striolar regions of the utricle and saccule. Analysis of gerbils and rats yielded results similar to those obtained in mice, suggesting that the spatiotemporal expression pattern of Kcnq4 in the vestibular system is conserved among rodents. Analyses of vestibular HCs of Bdnf conditional mutant mice, which are devoid of any innervation, demonstrate that regulation of Kcnq4 expression in vestibular HCs is independent of innervation.


Subject(s)
Hair Cells, Vestibular/metabolism , KCNQ Potassium Channels/metabolism , Neurons, Afferent/metabolism , Vestibule, Labyrinth/metabolism , Alternative Splicing , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Gene Expression Regulation, Developmental , Hair Cells, Vestibular/cytology , Immunohistochemistry , KCNQ Potassium Channels/genetics , Mice , Mice, Mutant Strains , Neurons, Afferent/cytology , Orientation/physiology , RNA, Messenger/analysis , Tissue Distribution , Vestibule, Labyrinth/cytology , Vestibule, Labyrinth/growth & development , Vestibule, Labyrinth/innervation
SELECTION OF CITATIONS
SEARCH DETAIL
...