Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 10091, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698065

ABSTRACT

Eukaryotes produce a large number of cytochrome P450s that mediate the synthesis and degradation of diverse endogenous and exogenous metabolites. Yet, most of these P450s are uncharacterized and global tools to study these challenging, membrane-resident enzymes remain to be exploited. Here, we applied activity profiling of plant, mouse and fungal P450s with chemical probes that become reactive when oxidized by P450 enzymes. Identification by mass spectrometry revealed labeling of a wide range of active P450s, including six plant P450s, 40 mouse P450s and 13 P450s of the fungal wheat pathogen Zymoseptoria tritici. We next used transient expression of GFP-tagged P450s by agroinfiltration to show ER-targeting and NADPH-dependent, activity-based labeling of plant, mouse and fungal P450s. Both global profiling and transient expression can be used to detect a broad range of active P450s to study e.g. their regulation and discover selective inhibitors.


Subject(s)
Cytochrome P-450 Enzyme System , Fungal Proteins , Proteome , Animals , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Mice , Proteome/metabolism , Fungal Proteins/metabolism , Fungal Proteins/genetics , Ascomycota/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics
2.
Org Biomol Chem ; 15(41): 8780-8787, 2017 Oct 25.
Article in English | MEDLINE | ID: mdl-29019509

ABSTRACT

Biocatalytic direct monohydroxylation of anilides has been achieved on preparative scale using mutant cytochrome P450BM3 enzymes. Representative mono- and disubstituted N-trifluoromethanesulfonyl anilides are shown to be converted in most cases to the corresponding 4-hydroxy derivatives, with substituent hydroxylation also occurring in two cases. By mutation variation, it is possible to achieve selective hydroxylation of either ring- or side-chain sites.


Subject(s)
Anilides/metabolism , Bacterial Proteins/metabolism , Cytochrome P-450 Enzyme System/metabolism , NADPH-Ferrihemoprotein Reductase/metabolism , Protein Engineering , Anilides/chemistry , Bacterial Proteins/chemistry , Cytochrome P-450 Enzyme System/chemistry , Hydroxylation , Molecular Structure , NADPH-Ferrihemoprotein Reductase/chemistry
3.
J Org Chem ; 77(17): 7262-81, 2012 Sep 07.
Article in English | MEDLINE | ID: mdl-22827338

ABSTRACT

A diastereodivergent hydroxyfluorination protocol enabling the direct conversion of some conformationally biased allylic amines to the corresponding diastereoisomeric amino fluorohydrins has been developed. Sequential treatment of a conformationally biased allylic amine with 2 equiv of HBF(4)·OEt(2) followed by m-CPBA promotes epoxidation of the olefin on the face proximal to the amino group under hydrogen-bonded direction from the in situ formed ammonium ion. Regioselective and stereospecific epoxide ring-opening by transfer of fluoride from a BF(4)(-) ion (an S(N)2-type process at the carbon atom distal to the ammonium moiety) then occurs in situ to give the corresponding amino fluorohydrin. Alternatively, an analogous reaction using 20 equiv of HBF(4)·OEt(2) results in preferential epoxidation of the opposite face of the olefin, which is followed by regioselective and stereospecific epoxide ring-opening by transfer of fluoride from a BF(4)(-) ion (an S(N)2-type process at the carbon atom distal to the ammonium moiety). The synthetic utility of this methodology is demonstrated via its application to a synthesis of 4-deoxy-4-fluoro-L-xylo-phytosphingosine and 4-deoxy-4-fluoro-L-lyxo-phytosphingosine, each in five steps from Garner's aldehyde.


Subject(s)
Amines/chemistry , Sphingosine/analogs & derivatives , Molecular Conformation , Sphingosine/chemical synthesis , Sphingosine/chemistry , Stereoisomerism
4.
J Org Chem ; 76(11): 4617-27, 2011 Jun 03.
Article in English | MEDLINE | ID: mdl-21495698

ABSTRACT

Treatment of a range of 2,3- and 3,4-epoxy amines with HBF(4)·OEt(2) at room temperature results in fast and efficient S(N)2-type ring-opening hydrofluorination to give stereodefined amino fluorohydrins. Operational simplicity, scalability, and short reaction time at ambient temperature are notable features of this method. The utility of this methodology is exemplified in a concise asymmetric synthesis of (S,S)-3-deoxy-3-fluorosafingol.

SELECTION OF CITATIONS
SEARCH DETAIL
...