Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230218, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38853569

ABSTRACT

We introduce and summarize reviews and research papers by speakers at a discussion meeting on 'Long-term potentiation: 50 years on' held at the Royal Society, London, on 20-21 November 2023. The meeting followed earlier discussion meetings marking the 30th and 40th anniversaries of the discovery of long-term potentiation. These new contributions give an overview of current research and controversies in a vibrant branch of neuroscience with important implications for our understanding of the neurobiological basis of many forms of learning and memory and a wide spectrum of neurological and cognitive disorders.This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Subject(s)
Long-Term Potentiation , Long-Term Potentiation/physiology , Humans , Animals , History, 20th Century , Learning , Memory/physiology , History, 21st Century
2.
Neurobiol Learn Mem ; 195: 107685, 2022 11.
Article in English | MEDLINE | ID: mdl-36174888

ABSTRACT

This study outlines two novel protocols for examining context specific recall in animals prior to embarking on neurobiological studies. The approach is distinct from and contrasts with studies investigating associative familiarity that depend upon procedural variations of the widely used novel object recognition task. It uses an event arena in which animals are trained across numerous sessions to search for, find and dig up reward from sandwells during sample and choice trials - a prominent spatial event for a rodent. The arena could be laid out as either of two highly distinct contexts with which the animals became fully familiar throughout training. In one protocol, the location of the correct sandwell in each context remained stable across days, whereas in the other, the correct digging location varied in a counterbalanced manner across each successive session. Thus, context-specific recall of the spatial location of successful digging during choice trials was either from a stable long-term memory or could reflect context specific spatial recency of the location where reward had been available that session. Both protocols revealed effective memory recall in choice and probe tests which, at the point of test, were procedurally identical in both cases.


Subject(s)
Memory , Mental Recall , Animals , Recognition, Psychology , Visual Perception , Reward
4.
Proc Biol Sci ; 285(1880)2018 06 13.
Article in English | MEDLINE | ID: mdl-29899064

ABSTRACT

Social withdrawal is one phenotypic feature of the monogenic neurodevelopmental disorder fragile-X. Using a 'knockout' rat model of fragile-X, we examined whether deletion of the Fmr1 gene that causes this condition would affect the ability to form and express a social hierarchy as measured in a tube test. Male fragile-X 'knockout' rats living together could successfully form a social dominance hierarchy, but were significantly subordinate to wild-type animals in mixed group cages. Over 10 days of repeated testing, the fragile-X mutant rats gradually showed greater variance and instability of rank during their tube-test encounters. This affected the outcome of future encounters with stranger animals from other cages, with the initial phenotype of wild-type dominance lost to a more complex picture that reflected, regardless of genotype, the prior experience of winning or losing. Our findings offer a novel insight into the complex dynamics of social interactions between laboratory living groups of fragile-X and wild-type rats. Even though this is a monogenic condition, experience has an impact upon future interactions with other animals. Gene/environment interactions should therefore be considered in the development of therapeutics.


Subject(s)
Fragile X Syndrome/psychology , Social Dominance , Animals , Disease Models, Animal , Male , Rats , Rats, Long-Evans
5.
Nat Commun ; 7: 11761, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27249364

ABSTRACT

Earlier diagnosis and treatment of Alzheimer's disease would greatly benefit from the identification of biomarkers at the prodromal stage. Using a prominent animal model of aspects of the disease, we here show using clinically relevant methodologies that very young, pre-pathological PDAPP mice, which overexpress mutant human amyloid precursor protein in the brain, exhibit two cryptic deficits that are normally undetected using standard methods of assessment. Despite learning a spatial memory task normally and displaying normal brain glucose uptake, they display faster forgetting after a long delay following performance to a criterion, together with a strong impairment of brain glucose uptake at the time of attempted memory retrieval. Preliminary observations suggest that these deficits, likely caused by an impairment in systems consolidation, could be rescued by immunotherapy with an anti-ß-amyloid antibody. Our data suggest a biomarker strategy for the early detection of ß-amyloid-related abnormalities.


Subject(s)
Alzheimer Disease/diagnosis , Amyloid beta-Protein Precursor/genetics , Antibodies, Neutralizing/pharmacology , Brain/drug effects , Glucose/metabolism , Memory Disorders/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Amyloid beta-Protein Precursor/antagonists & inhibitors , Amyloid beta-Protein Precursor/metabolism , Animals , Biological Transport/drug effects , Biomarkers/metabolism , Brain/metabolism , Brain/physiopathology , Brain Mapping , Deoxyglucose/pharmacology , Disease Models, Animal , Female , Gene Expression , Humans , Maze Learning/drug effects , Memory Disorders/genetics , Memory Disorders/physiopathology , Memory Disorders/prevention & control , Mice , Mice, Transgenic , Transgenes
7.
Philos Trans R Soc Lond B Biol Sci ; 370(1666)2015 Apr 19.
Article in English | MEDLINE | ID: mdl-25750246

ABSTRACT

David Marr's theory of the archicortex, a brain structure now more commonly known as the hippocampus and hippocampal formation, is an epochal contribution to theoretical neuroscience. Addressing the problem of how information about 10 000 events could be stored in the archicortex during the day so that they can be retrieved using partial information and then transferred to the neocortex overnight, the paper presages a whole wealth of later empirical and theoretical work, proving impressively prescient. Despite this impending success, Marr later apparently grew dissatisfied with this style of modelling, but he went on to make seminal suggestions that continue to resonate loudly throughout the field of theoretical neuroscience. We describe Marr's theory of the archicortex and his theory of theories, setting them into their original and a contemporary context, and assessing their impact. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.


Subject(s)
Hippocampus/physiology , Memory/physiology , Models, Neurological , Neurosciences/history , History, 20th Century , Humans
8.
Philos Trans R Soc Lond B Biol Sci ; 369(1633): 20130129, 2014 Jan 05.
Article in English | MEDLINE | ID: mdl-24298133

ABSTRACT

We summarize the reviews and research papers submitted by speakers at a discussion meeting on Synaptic Plasticity in Health and Disease held at the Royal Society, London on 2-3 December 2013, and a subsequent satellite meeting convened at the Royal Society/Kavli Centre at Chicheley Hall on 4-5 December 2013. Together, these contributions give an overview of current research and controversies in a vibrant branch of neuroscience with important implications for the understanding of many forms of learning and memory, and a wide spectrum of neurological and cognitive disorders.


Subject(s)
Mental Disorders/physiopathology , Nervous System Diseases/physiopathology , Neuronal Plasticity/physiology , Research/trends , Synapses/physiology , Cognition/physiology , Humans , Learning/physiology , Memory/physiology
9.
Eur J Neurosci ; 37(5): 700-17, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23311352

ABSTRACT

Three experiments were conducted to contrast the hypothesis that hippocampal N-methyl-d-aspartate (NMDA) receptors participate directly in the mechanisms of hippocampus-dependent learning with an alternative view that apparent impairments of learning induced by NMDA receptor antagonists arise because of drug-induced neuropathological and/or sensorimotor disturbances. In experiment 1, rats given a chronic i.c.v. infusion of d-AP5 (30 mm) at 0.5 µL/h were selectively impaired, relative to aCSF-infused animals, in place but not cued navigation learning when they were trained during the 14-day drug infusion period, but were unimpaired on both tasks if trained 11 days after the minipumps were exhausted. d-AP5 caused sensorimotor disturbances in the spatial task, but these gradually worsened as the animals failed to learn. Histological assessment of potential neuropathological changes revealed no abnormalities in d-AP5-treated rats whether killed during or after chronic drug infusion. In experiment 2, a deficit in spatial learning was also apparent in d-AP5-treated rats trained on a spatial reference memory task involving two identical but visible platforms, a task chosen and shown to minimise sensorimotor disturbances. HPLC was used to identify the presence of d-AP5 in selected brain areas. In Experiment 3, rats treated with d-AP5 showed a delay-dependent deficit in spatial memory in the delayed matching-to-place protocol for the water maze. These data are discussed with respect to the learning mechanism and sensorimotor accounts of the impact of NMDA receptor antagonists on brain function. We argue that NMDA receptor mechanisms participate directly in spatial learning.


Subject(s)
2-Amino-5-phosphonovalerate/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Maze Learning/drug effects , Memory/drug effects , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , 2-Amino-5-phosphonovalerate/administration & dosage , Animals , Cerebral Cortex/cytology , Cerebral Cortex/drug effects , Cerebral Cortex/physiology , Cues , Excitatory Amino Acid Antagonists/administration & dosage , Female , Hippocampus/cytology , Hippocampus/drug effects , Hippocampus/physiology , Infusions, Intraventricular , Infusions, Spinal , Male , Rats , Rats, Wistar
10.
Nat Commun ; 3: 1246, 2012.
Article in English | MEDLINE | ID: mdl-23212375

ABSTRACT

In isolated hippocampal slices, decaying long-term potentiation can be stabilized and converted to late long-term potentiation lasting many hours, by prior or subsequent strong high-frequency tetanization of an independent input to a common population of neurons-a phenomenon known as 'synaptic tagging and capture'. Here we show that the same phenomenon occurs in the intact rat. Late long-term potentiation can be induced in CA1 during the inhibition of protein synthesis if an independent input is strongly tetanized beforehand. Conversely, declining early long-term potentiation induced by weak tetanization can be converted into lasting late long-term potentiation by subsequent strong tetanization of a separate input. These findings indicate that synaptic tagging and capture is not limited to in vitro preparations; the past and future activity of neurons has a critical role in determining the persistence of synaptic changes in the living animal, thus providing a bridge between cellular studies of protein synthesis-dependent synaptic potentiation and behavioural studies of memory persistence.


Subject(s)
Long-Term Potentiation/physiology , Synapses/physiology , Animals , Anisomycin/pharmacology , Benzazepines/pharmacology , CA1 Region, Hippocampal/physiology , CA3 Region, Hippocampal/physiology , Dopamine/physiology , Dopamine Antagonists/pharmacology , Dose-Response Relationship, Drug , Hippocampus/physiology , Male , Neurons/physiology , Protein Synthesis Inhibitors/pharmacology , Rats , Synaptic Potentials/physiology
11.
Neurobiol Learn Mem ; 89(4): 361-5, 2008 May.
Article in English | MEDLINE | ID: mdl-18055228

ABSTRACT

A comment by Rudy and Sutherland [Rudy, J. R., & Sutherland, R. J. (2008). Is it systems or cellular consolidation? Time will tell. An alternative interpretation of the Morris Group's recent Science Paper. Neurobiology of Learning and Memory] has suggested an alternative account of recent findings concerning very rapid systems consolidation as described in a recent paper by Tse et al [Tse, D., Langston, R. F., Kakeyama, M., Bethus, I., Spooner, P. A., & Wood, E. R., et al. (2007). Schemas and memory consolidation. Science, 316, 76-82]. This is to suppose that excitotoxic lesions of the hippocampus cause transient disruptive neural activity outside the target structure that interferes with cellular consolidation in the cortex. We disagree with this alternative interpretation of our findings and cite relevant data in our original paper indicating why this proposal is unlikely. Various predictions of the two accounts are nonetheless outlined, together with the types of experiments needed to resolve the issue of whether systems consolidation can occur very rapidly when guided by activated neural schemas.


Subject(s)
Association Learning/physiology , Hippocampus/cytology , Hippocampus/physiology , Memory/physiology , Animals , Denervation , Time Factors
12.
Eur J Neurosci ; 23(11): 2829-46, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16819972

ABSTRACT

The 2004 EJN Lecture was an attempt to lay out further aspects of a developing neurobiological theory of hippocampal function [Morris, R.G.M., Moser, E.I., Riedel, G., Martin, S.J., Sandin, J., Day, M. & O'Carroll, C. (2003) Phil. Trans. R. Soc. Lond. B Biol. Sci., 358, 773-786.] These are that (i) activity-dependent synaptic plasticity plays a key role in the automatic encoding and initial storage of attended experience; (ii) the persistence of hippocampal synaptic potentiation over time can be influenced by other independent neural events happening closely in time, an idea with behavioural implications for memory; and (iii) that systems-level consolidation of memory traces within neocortex is guided both by hippocampal traces that have been subject to cellular consolidation and by the presence of organized schema in neocortex into which relevant newly encoded information might be stored. Hippocampal memory is associative and, to study it more effectively than with previous paradigms, a new learning task is described which is unusual in requiring the incidental encoding of flavour-place paired associates, with the readout of successful storage being successful recall of a place given the flavour with which it was paired. NMDA receptor-dependent synaptic plasticity is shown to be critical for the encoding and intermediate storage of memory traces in this task, while AMPA receptor-mediated fast synaptic transmission is necessary for memory retrieval. Typically, these rapidly encoded traces decay quite rapidly over time. Synaptic potentiation also decays rapidly, but can be rendered more persistent by a process of cellular consolidation in which synaptic tagging and capture play a key part in determining whether or not it will be persistent. Synaptic tags set at the time of an event, even many trivial events, can capture the products of the synthesis of plasticity proteins set in train by events before, during or even after an event to be remembered. Tag-protein interactions stabilize synaptic potentiation and, by implication, memory. The behavioural implications of tagging are explored. Finally, using a different protocol for flavour-place paired associate learning, it is shown that rats can develop a spatial schema which represents the relative locations of several different flavours of food hidden at places within a familiar space. This schema is learned gradually but, once acquired, enables new paired associates to be encoded and stored in one trial. Their incorporation into the schema prevents rapid forgetting and suggests that schema play a key and hitherto unappreciated role in systems-level memory consolidation. The elements of what may eventually mature into a more formal neurobiological theory of hippocampal memory are laid out as specific propositions with detailed conceptual discussion and reference to recent data.


Subject(s)
Hippocampus/physiology , Neurobiology , Neuronal Plasticity/physiology , Synapses/physiology , Animals , Hippocampus/cytology , Humans , Memory/physiology , Models, Biological
13.
Behav Neurosci ; 118(5): 1022-32, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15506884

ABSTRACT

To assess the interaction between spatial and procedural memory systems, the authors developed a learning protocol in the water maze using a rising "Atlantis" platform that requires rats to learn to swim to a specific location and, once there, to learn a "dwelling" response to raise the platform. In this protocol, the effects of temporal inactivation of the dorsal hippocampus with the AMPA/kainate receptor antagonist LY326325 on different memory phases were investigated. Hippocampal inactivation impaired acquisition of the searching task, mainly because of disruption of procedural learning. Inactivation also impeded consolidation and retrieval of spatial information, while leaving expression of dwelling responses intact. These findings challenge the idea of a sharp demarcation between spatial and procedural learning with respect to hippocampal involvement.


Subject(s)
Escape Reaction/physiology , Hippocampus/physiology , Maze Learning/physiology , Animals , Escape Reaction/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Hippocampus/drug effects , Male , Maze Learning/drug effects , Rats
14.
Nature ; 424(6945): 205-9, 2003 Jul 10.
Article in English | MEDLINE | ID: mdl-12853960

ABSTRACT

Paired-associate learning is often used to examine episodic memory in humans. Animal models include the recall of food-cache locations by scrub jays and sequential memory. Here we report a model in which rats encode, during successive sample trials, two paired associates (flavours of food and their spatial locations) and display better-than-chance recall of one item when cued by the other. In a first study, pairings of a particular foodstuff and its location were never repeated, so ensuring unique 'what-where' attributes. Blocking N-methyl-d-aspartate receptors in the hippocampus--crucial for the induction of certain forms of activity-dependent synaptic plasticity--impaired memory encoding but had no effect on recall. Inactivating hippocampal neural activity by blocking alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors impaired both encoding and recall. In a second study, two paired associates were trained repeatedly over 8 weeks in new pairs, but blocking of hippocampal AMPA receptors did not affect their recall. Thus we conclude that unique what-where paired associates depend on encoding and retrieval within a hippocampal memory space, with consolidation of the memory traces representing repeated paired associates in circuits elsewhere.


Subject(s)
Association Learning/physiology , Receptors, AMPA/physiology , Receptors, N-Methyl-D-Aspartate/physiology , 2-Amino-5-phosphonovalerate/pharmacology , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Animals , Excitatory Amino Acid Antagonists/pharmacology , Food Preferences , Hippocampus/physiology , Male , Mental Recall , Rats , Receptors, AMPA/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Spatial Behavior
15.
Philos Trans R Soc Lond B Biol Sci ; 358(1432): 773-86, 2003 Apr 29.
Article in English | MEDLINE | ID: mdl-12744273

ABSTRACT

The hypothesis that synaptic plasticity is a critical component of the neural mechanisms underlying learning and memory is now widely accepted. In this article, we begin by outlining four criteria for evaluating the 'synaptic plasticity and memory (SPM)' hypothesis. We then attempt to lay the foundations for a specific neurobiological theory of hippocampal (HPC) function in which activity-dependent synaptic plasticity, such as long-term potentiation (LTP), plays a key part in the forms of memory mediated by this brain structure. HPC memory can, like other forms of memory, be divided into four processes: encoding, storage, consolidation and retrieval. We argue that synaptic plasticity is critical for the encoding and intermediate storage of memory traces that are automatically recorded in the hippocampus. These traces decay, but are sometimes retained by a process of cellular consolidation. However, we also argue that HPC synaptic plasticity is not involved in memory retrieval, and is unlikely to be involved in systems-level consolidation that depends on HPC-neocortical interactions, although neocortical synaptic plasticity does play a part. The information that has emerged from the worldwide focus on the mechanisms of induction and expression of plasticity at individual synapses has been very valuable in functional studies. Progress towards a comprehensive understanding of memory processing will also depend on the analysis of these synaptic changes within the context of a wider range of systems-level and cellular mechanisms of neuronal transmission and plasticity.


Subject(s)
Hippocampus/physiology , Memory/physiology , Models, Neurological , Neurobiology/methods , Neuronal Plasticity/physiology , Synapses/physiology , Animals , Receptors, N-Methyl-D-Aspartate/physiology
16.
Hippocampus ; 12(5): 609-36, 2002.
Article in English | MEDLINE | ID: mdl-12440577

ABSTRACT

The notion that changes in synaptic efficacy underlie learning and memory processes is now widely accepted, although definitive proof of the synaptic plasticity and memory hypothesis is still lacking. This article reviews recent evidence relevant to the hypothesis, with particular emphasis on studies of experience-dependent plasticity in the neocortex and hippocampus. In our view, there is now compelling evidence that changes in synaptic strength occur as a consequence of certain forms of learning. A major challenge will be to determine whether such changes constitute the memory trace itself or play a less specific supporting role in the information processing that accompanies memory formation.


Subject(s)
Hippocampus/physiology , Learning/physiology , Long-Term Potentiation/physiology , Memory/physiology , Neuronal Plasticity/physiology , Synapses/physiology , Animals , Humans , Models, Neurological , Neurons/physiology
17.
Braz. j. med. biol. res ; 33(9): 993-1002, Sept. 2000.
Article in English | LILACS | ID: lil-267980

ABSTRACT

This article is a transcription of an electronic symposium in which some active researchers were invited by the Brazilian Society for Neuroscience and Behavior (SBNeC) to discuss the last decade's advances in neurobiology of learning and memory. The way different parts of the brain are recruited during the storage of different kinds of memory (e.g., short-term vs long-term memory, declarative vs procedural memory) and even the property of these divisions were discussed. It was pointed out that the brain does not really store memories, but stores traces of information that are later used to create memories, not always expressing a completely veridical picture of the past experienced reality. To perform this process different parts of the brain act as important nodes of the neural network that encode, store and retrieve the information that will be used to create memories. Some of the brain regions are recognizably active during the activation of short-term working memory (e.g., prefrontal cortex), or the storage of information retrieved as long-term explicit memories (e.g., hippocampus and related cortical areas) or the modulation of the storage of memories related to emotional events (e.g., amygdala). This does not mean that there is a separate neural structure completely supporting the storage of each kind of memory but means that these memories critically depend on the functioning of these neural structures. The current view is that there is no sense in talking about hippocampus-based or amygdala-based memory since this implies that there is a one-to-one correspondence. The present question to be solved is how systems interact in memory. The pertinence of attributing a critical role to cellular processes like synaptic tagging and protein kinase A activation to explain the memory storage processes at the cellular level was also discussed


Subject(s)
Learning/physiology , Memory/physiology , Amygdala , Hippocampus , Memory, Short-Term/physiology
18.
Eur J Neurosci ; 2(12): 1016-1028, 1990.
Article in English | MEDLINE | ID: mdl-12106063

ABSTRACT

This study examined the effects of ibotenic acid-induced lesions of the hippocampus, subiculum and hippocampus +/- subiculum upon the capacity of rats to learn and perform a series of allocentric spatial learning tasks in an open-field water maze. The lesions were made by infusing small volumes of the neurotoxin at a total of 26 (hippocampus) or 20 (subiculum) sites intended to achieve complete target cell loss but minimal extratarget damage. The regional extent and axon-sparing nature of these lesions was evaluated using both cresyl violet and Fink - Heimer stained sections. The behavioural findings indicated that both the hippocampus and subiculum lesions caused impairment to the initial postoperative acquisition of place navigation but did not prevent eventual learning to levels of performance almost as effective as those of controls. However, overtraining of the hippocampus + subiculum lesioned rats did not result in significant place learning. Qualitative observations of the paths taken to find a hidden escape platform indicated that different strategies were deployed by hippocampal and subiculum lesioned groups. Subsequent training on a delayed matching to place task revealed a deficit in all lesioned groups across a range of sample choice intervals, but the subiculum lesioned group was less impaired than the group with the hippocampal lesion. Finally, unoperated control rats given both the initial training and overtraining were later given either a hippocampal lesion or sham surgery. The hippocampal lesioned rats were impaired during a subsequent retention/relearning phase. Together, these findings suggest that total hippocampal cell loss may cause a dual deficit: a slower rate of place learning and a separate navigational impairment. The prospect of unravelling dissociable components of allocentric spatial learning is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...