Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 5607, 2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36153340

ABSTRACT

Piezoelectric materials convert mechanical stress to electrical energy and thus are widely used in energy harvesting and wearable devices. However, in the piezoelectric family, there are two pairs of properties that improving one of them will generally compromises the other, which limits their applications. The first pair is piezoelectric strain and voltage constant, and the second is piezoelectric performance and mechanical softness. Here, we report a molecular bond weakening strategy to mitigate these issues in organic-inorganic hybrid piezoelectrics. By introduction of large-size halide elements, the metal-halide bonds can be effectively weakened, leading to a softening effect on bond strength and reduction in polarization switching barrier. The obtained solid solution C6H5N(CH3)3CdBr2Cl0.75I0.25 exhibits excellent piezoelectric constants (d33 = 367 pm/V, g33 = 3595 × 10-3 Vm/N), energy harvesting property (power density is 11 W/m2), and superior mechanical softness (0.8 GPa), promising this hybrid as high-performance soft piezoelectrics.

3.
Nat Mater ; 20(5): 612-617, 2021 May.
Article in English | MEDLINE | ID: mdl-33432147

ABSTRACT

Materials that can produce large controllable strains are widely used in shape memory devices, actuators and sensors1,2, and great efforts have been made to improve the strain output3-6. Among them, ferroelastic transitions underpin giant reversible strains in electrically driven ferroelectrics or piezoelectrics and thermally or magnetically driven shape memory alloys7,8. However, large-strain ferroelastic switching in conventional ferroelectrics is very challenging, while magnetic and thermal controls are not desirable for practical applications. Here we demonstrate a large shear strain of up to 21.5% in a hybrid ferroelectric, C6H5N(CH3)3CdCl3, which is two orders of magnitude greater than that in conventional ferroelectric polymers and oxides. It is achieved by inorganic bond switching and facilitated by structural confinement of the large organic moieties, which prevents undesired 180° polarization switching. Furthermore, Br substitution can soften the bonds, allowing a sizable shear piezoelectric coefficient (d35 ≈ 4,830 pm V-1) at the Br-rich end of the solid solution, C6H5N(CH3)3CdBr3xCl3(1-x). The electromechanical properties of these compounds suggest their potential in lightweight and high-energy-density devices, and the strategy described here could inspire the development of next-generation piezoelectrics and electroactive materials based on hybrid ferroelectrics.

4.
Chem Commun (Camb) ; 56(46): 6289-6292, 2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32379849

ABSTRACT

Anisotropic cell volume expansion by mechanical grinding of the solid facilitates the concerted rotation of the photo-inert helical coordination polymer, which causes the misaligned arms containing olefin functional groups in the neighbouring strands to align to undergo [2+2] cycloaddition reaction in 83% yield.

5.
RSC Adv ; 10(25): 14812-14817, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-35497148

ABSTRACT

Coordination polymers (CPs) and coordination network solids such as metal-organic frameworks (MOFs) have gained increasing interest during recent years due to their unique properties and potential applications. Preparing 3D printed structures using CP would provide many advantages towards utilization in fields such as catalysis and sensing. So far, functional 3D structures were printed mostly by dispersing pre-synthesized particles of CPs and MOFs within a polymerizable carrier. This resulted in a CP active material dispersed within a 3D polymeric object, which may obstruct or impede the intrinsic properties of the CP. Here, we present a new concept for obtaining 3D free-standing objects solely composed of CP material, starting from coordination metal complexes as the monomeric building blocks, and utilizing the 3D printer itself as a tool to in situ synthesize a coordination polymer during printing, and to shape it into a 3D object, simultaneously. To demonstrate this, a 3D-shaped nickel tetra-acrylamide monomeric complex composed solely of the CP without a binder was successfully prepared using our direct print-and-form approach. We expect that this work will open new directions and unlimited potential in additive manufacturing and utilization of CPs.

6.
J Phys Chem A ; 122(31): 6416-6423, 2018 Aug 09.
Article in English | MEDLINE | ID: mdl-30011371

ABSTRACT

Organic-inorganic hybrid perovskites with considerable dielectric differences near the phase transition are potential candidates as phase transition materials (PTMs). However, compared with traditional PTMs, which require multiple switchable channels, the hybrid perovskites so far show only switching behavior in dielectric constants. We herein report a new crystal design strategy and successful synthesis of a two-dimensional perovskite (C6H5C2H4NH3)2MnCl4. In this hybrid perovskite, the manganese chloride octahedron is a crystal field sensitive luminescent molecular system. The distortion level of MnCl64- also depends on temperature during the order-disorder phase transition. Hence, such a manganese octahedron-based perovskite can exhibit switching behaviors in both dielectric and optical properties. We observe a 14% decrease in optical absorption and 1.6 times increase in dielectric constant during the phase transition at 365 K. In addition, the characteristic photoluminescence decreases by 17% in intensity. Such a molecule-based crystal design paves a new way to explore multifunctional PTMs based on organic-inorganic perovskites.

SELECTION OF CITATIONS
SEARCH DETAIL
...