Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Light Sci Appl ; 13(1): 8, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38177126

ABSTRACT

Polarization-independent phase modulators based upon liquid crystals (LCs) with a simple device architecture have long been desired for a range of optical applications. Recently, researchers have demonstrated a novel fabrication procedure using cholesteric LCs as a primer for achieving low polarization dependence coupled with a large phase modulation depth.

2.
Small Methods ; 8(1): e2301025, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37814377

ABSTRACT

Over the past decade, there has been a rising interest in utilizing functionalized porous polymers for sensor applications. By incorporating functional groups into nanostructured materials like hydrogels, nanosheets, and nanopores, exciting new opportunities have emerged for biomarker detection. The ability of functionalized polymers to undergo physical changes and deformations makes them perfect for modulating optical signals. This chemical mechanism enables the creation of biocompatible sensors for in situ biomarker measurement. Here a comprehensive overview of the current publication trends is provided in functionalized polymers, encompassing functional groups that can induce measurable physical deformations. It explores various materials categorized based on their detection targets, which include proteins, carbohydrates, ions, and deoxyribonucleic acid. As such, this work serves as a valuable reference for the development of functionalized polymer-based sensors.


Subject(s)
Nanopores , Polymers , Proteins , Carbohydrates , Hydrogels
3.
Light Sci Appl ; 12(1): 242, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37735157

ABSTRACT

Lasers possess many attractive features (e.g., high brightness, narrow linewidth, well-defined polarization) that make them the ideal illumination source for many different scientific and technological endeavors relating to imaging and the display of high-resolution information. However, their high-level of coherence can result in the formation of noise, referred to as speckle, that can corrupt and degrade images. Here, we demonstrate a new electro-optic technology for combatting laser speckle using a chiral nematic liquid crystal (LC) dispersed with zwitterionic dopants. Results are presented that demonstrate when driven at the optimum electric field conditions, the speckle noise can be reduced by >90% resulting in speckle contrast (C) values of C = 0.07, which is approaching that required to be imperceptible to the human eye. This LC technology is then showcased in an array of different display and imaging applications, including a demonstration of speckle reduction in modern vectorial laser-based imaging.

4.
ACS Photonics ; 10(9): 3401-3408, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37743939

ABSTRACT

In this Article, we present a series of novel laser-written liquid crystal (LC) devices for aberration control for applications in beam shaping or aberration correction through adaptive optics. Each transparent LC device can correct for a chosen aberration mode with continuous greyscale tuning up to a total magnitude of more than 2π radians phase difference peak to peak at a wavelength of λ = 660 nm. For the purpose of demonstration, we present five different devices for the correction of five independent Zernike polynomial modes (although the technique could readily be used to manufacture devices based on other modes). Each device is operated by a single electrode pair tuned between 0 and 10 V. These devices have potential as a low-cost alternative to spatial light modulators for applications where a low-order aberration correction is sufficient and transmissive geometries are required.

5.
Nano Lett ; 23(6): 2277-2286, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36913627

ABSTRACT

Colloidal nanocrystals (NCs) have shown remarkable promise for optoelectronics, energy harvesting, photonics, and biomedical imaging. In addition to optimizing quantum confinement, the current challenge is to obtain a better understanding of the critical processing steps and their influence on the evolution of structural motifs. Computational simulations and electron microscopy presented in this work show that nanofaceting can occur during nanocrystal synthesis from a Pb-poor environment in a polar solvent. This could explain the curved interfaces and the olivelike-shaped NCs observed experimentally when these conditions are employed. Furthermore, the wettability of the PbS NCs solid film can be further modified via stoichiometry control, which impacts the interface band bending and, therefore, processes such as multiple junction deposition and interparticle epitaxial growth. Our results suggest that nanofaceting in NCs can become an inherent advantage when used to modulate band structures beyond what is traditionally possible in bulk crystals.

6.
Opt Express ; 30(14): 24788-24803, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-36237024

ABSTRACT

We present dynamic time-resolved measurements of a multi-pixel analog liquid crystal phase modulator driven at a 1 kHz frame rate. A heterodyne interferometer is used to interrogate two pixels independently and simultaneously, to deconvolve phase modulation with a wide bandwidth. The root mean squared optical phase error within a 30 Hz to 25 kHz bandwidth is <0.5° and the crosstalk rejection is 50 dB. Measurements are shown for a custom-built device with a flexoelectro-optic chiral nematic liquid crystal. However, the technique is applicable to many different types of optical phase modulators and spatial light modulators.

7.
Opt Express ; 30(9): 15482-15494, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35473267

ABSTRACT

Sapphire optical fiber has the ability to withstand ultrahigh temperatures and high radiation, but it is multimoded which prevents its use in many sensing applications. Problematically, Bragg gratings in such fiber exhibit multiple reflection peaks with a fluctuating power distribution. In this work, we write single-mode waveguides with Bragg gratings in sapphire using a novel multi-layer depressed cladding design in the 1550 nm telecommunications waveband. The Bragg gratings have a narrow bandwidth (<0.5 nm) and have survived annealing at 1000°C. The structures are inscribed with femtosecond laser direct writing, using adaptive beam shaping with a non-immersion objective. A single-mode sapphire fiber Bragg grating is created by writing a waveguide with a Bragg grating within a 425 µm diameter sapphire optical fiber, providing significant potential for accurate remote sensing in ultra-extreme environments.

8.
Sci Rep ; 11(1): 4818, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33649413

ABSTRACT

The artefact known as speckle can plague numerous imaging applications where the narrow linewidth of laser light is required, which includes laser projection and medical imaging. Here, we report on the use of thin-film chiral nematic liquid crystal (LC) devices that can be used to mitigate the influence of speckle when subjected to an applied electric field. Results are presented which show that the speckle contrast (a quantitative measure of the presence of speckle) can be significantly reduced by decreasing the pitch of the chiral nematic LC from 2700 to 244 nm. Further reduction in the speckle contrast can be observed by operating the diffuser technology at a temperature close to the chiral nematic to isotropic transition. At such temperatures, we observe a simultaneous improvement in the transmission of light through the device and a decrease in the electric field amplitude required for the minimum speckle contrast value. We conclude by presenting a laser projected image of the 1951 USAF target with and without the LC device to demonstrate the visual improvement as a result of the speckle reduction.

9.
ACS Appl Mater Interfaces ; 13(3): 4244-4252, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33448802

ABSTRACT

The development of highly conductive electrodes with robust mechanical durability and clear transmittance in the visible to IR spectral range is of great importance for future wearable/flexible electronic applications. In particular, low resistivity, robust flexibility, and wide spectral transparency have a significant impact on optoelectronic performance. Herein, we introduce a new class of covellite copper monosulfide (CuS) nanosheet films as a promising candidate for soft transparent conductive electrodes (TCEs). An atmospheric sulfur adsorption-corrosion phenomenon represents a key approach in our work for the achievement of wafer-scale CuS nanosheet films through systematic control of the neat Cu layer thickness ranging from 2 to 10 nm multilayers at room temperature. These nanosheet films provide outstanding conductivity (∼25 Ω sq-1) and high transparency (> 80%) in the visible to infrared region as well as distinct flexibility and long stability under air exposure, yielding a high figure-of-merit (∼60) that is comparable to that of conventional rigid metal oxide material-based TCEs. Our unique room temperature synthesis process delivers high quality CuS nanosheets on any arbitrary substrates in a short time (< 1 min) scale, thus guaranteeing the widespread use of highly producible and scalable device fabrication.

10.
Nat Commun ; 11(1): 2203, 2020 May 05.
Article in English | MEDLINE | ID: mdl-32371857

ABSTRACT

Topological defects are a consequence of broken symmetry in ordered systems and are important for understanding a wide variety of phenomena in physics. In liquid crystals (LCs), defects exist as points of discontinuous order in the vector field that describes the average orientation of the molecules in space and are crucial for explaining the fundamental behaviour and properties of these mesophases. Recently, LC defects have also been explored from the perspective of technological applications including self-assembly of nanomaterials, optical-vortex generation and in tunable plasmonic metamaterials. Here, we demonstrate the fabrication and stabilisation of electrically-tunable defects in an LC device using two-photon polymerisation and explore the dynamic behaviour of defects when confined by polymer structures laser-written in topologically discontinuous states. We anticipate that our defect fabrication technique will enable the realisation of tunable, 3D, reconfigurable LC templates towards nanoparticle self-assembly, tunable metamaterials and next-generation spatial light modulators for light-shaping.

11.
Adv Mater ; 32(9): e1904863, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31984592

ABSTRACT

Although well-established textbook arguments suggest that static electric susceptibility χ(0) must be positive in "all bodies," it has been pointed out that materials that are not in thermodynamic equilibrium are not necessarily subject to this restriction. Media with inverted populations of atomic and molecular energy levels have been predicted theoretically to exhibit a χ(0) < 0 state, however the systems envisioned require reduced temperature, reduced pressure, and an external pump laser to maintain the population inversion. Further, the existence of χ(0) < 0 has never been confirmed experimentally. Here, a completely different approach is taken to the question of χ(0) < 0 and a design concept to achieve "true" χ(0) < 0 is proposed based on active metamaterials with internal power sources. Two active metamaterial structures are fabricated that, despite still having their power sources implemented externally for reasons of practical convenience, provide evidence in support of the general concept. Effective values are readily achieved at room temperature and pressure and are tunable throughout the range of stability -1 < χ(0) < 0, resulting in experimentally-determined magnitudes that are over one thousand times greater than those predicted previously. Since χ(0) < 0 is the missing electric analog of diamagnetism, this work opens the door to new technological capabilities such as stable electrostatic levitation.

12.
ACS Nano ; 13(11): 13047-13055, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31618016

ABSTRACT

Two-dimensional (2D) heterostructured or alloyed monolayers composed of transition metal dichalcogenides (TMDCs) have recently emerged as promising materials with great potential for atomically thin electronic applications. However, fabrication of such artificial TMDC heterostructures with a sharp interface and a large crystal size still remains a challenge because of the difficulty in controlling various growth parameters simultaneously during the growth process. Here, a facile synthetic protocol designed for the production of the lateral TMDC heterostructured and alloyed monolayers is presented. A chemical vapor deposition approach combined with solution-processed precursor deposition makes it possible to accurately control the sequential introduction time and the supersaturation levels of the vaporized precursors and thus reliably and exclusively produces selective and heterogeneous epitaxial growth of TMDC monolayer crystals. In addition, TMDC core/shell heterostructured (MoS2/alloy, alloy/WS2) or alloyed (Mo1-xWxS2) monolayers are also easily obtained with precisely controlled growth parameters, such as sulfur introduction timing and growth temperature. These results represent a significant step toward the development of various 2D materials with interesting properties.

13.
Opt Express ; 27(11): 15184-15193, 2019 May 27.
Article in English | MEDLINE | ID: mdl-31163718

ABSTRACT

We present here the first time-resolved tilt-angle and retardance measurements for large-tilt (>45°) flexoelectro-optic liquid crystal modulators. These devices have potential for next generation fast switching (>1 kHz), 0-2π analog phase spatial light modulators (SLMs), with applications in optical beamsteering, microscopy and micromachining. The chiral nematic device used consisted of a mixture of CBC7CB and the chiral dopant R5011 in a nominally 5 µm-thick cell, aligned in the uniform lying helix mode. As the device is dynamically switched over angles of ± 54°, retardance changes of up to 0.17λ are observed. Furthermore, the time-resolved measurements reveal an asymmetry in the tilt in the optic-axis depending on the polarity of the applied electric field. The change in the optic-axis exhibits a pattern dependence, whereby it is determined by both the pulse history and the applied field. This pattern dependence results in tilt-angle errors of up to 8.8°, which could manifest as phase errors as large as 35.2° in potential SLMs. These time domain measurements may allow correction of these deterministic errors, to realize practical devices.

14.
Sci Rep ; 9(1): 7016, 2019 May 07.
Article in English | MEDLINE | ID: mdl-31064999

ABSTRACT

In this paper, we demonstrate a flexoelectro-optic liquid crystal phase-only device that uses a chiral nematic reflector to achieve full 2π phase modulation. This configuration is found to be very tolerant to imperfections in the chiral nematic reflector provided that the flexoelectro-optic LC layer fulfils the half-wave condition. Encouragingly, the modulation in the phase, which operates at kHz frame rates, is also accompanied by low amplitude modulation. The configuration demonstrated herein is particularly promising for the development of next-generation liquid crystal on silicon spatial light modulators.

15.
Nanoscale ; 11(11): 4726-4734, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30839971

ABSTRACT

Monolayered, semiconducting molybdenum disulfide (MoS2) is of considerable interest for its potential applications in next-generation flexible, wearable, and transparent photodetectors because it has outstanding physical properties coupled with unique atomically thin dimensions. However, there is still a lack of understanding in terms of the underlying mechanisms responsible for the photoresponse dynamics, which makes it difficult to identify the appropriate device design strategy for achieving a fast photoresponse time in MoS2 photodetectors. In this study, we investigate the importance of surface functionalization on controlling the charge carrier densities in a MoS2 monolayer and in turn the corresponding behavior of the photoresponse in relation to the position of the Fermi-level and the energy band structure. We find that the p-doping and n-doping, which is achieved through the surface functionalization of the MoS2 monolayer, leads to devices with different photoresponse behavior. Specifically, the MoS2 devices with surface functional groups contributing to p-doping exhibited a faster response time as well as higher sensitivity compared to that observed for the MoS2 devices with surface functional groups contributing to n-doping. We attribute this difference to the degree of bending in the energy bands at the metal-semiconductor junction as a result of shifting in the Fermi-level position, which influences the optoelectronic transport properties as well as the recombination dynamics leading to a low dark and thus high detectivity and fast decay time. Based upon these findings, we have also demonstrated the broad applicability of surface functionalization by fabricating a flexible MoS2 photodetector that shows an outstanding decay time of 0.7 s, which is the fastest response time observed in flexible MoS2 detectors ever reported.

16.
Opt Lett ; 43(24): 5993-5996, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30547988

ABSTRACT

We present fiber Bragg gratings (FBGs) fabricated using adaptive optics aberration compensation for the first time to the best of our knowledge. The FBGs are fabricated with a femtosecond laser by the point-by-point method using an air-based objective lens, removing the requirement for immersion oil or ferrules. We demonstrate a general phase correction strategy that can be used for accurate fabrication at any point in the fiber cross-section. We also demonstrate a beam-shaping approach that nullifies the aberration when focused inside a central fiber core. Both strategies give results which are in excellent agreement with coupled-mode theory. An extremely low wavelength polarization sensitivity of 4 pm is reported.

17.
ACS Appl Mater Interfaces ; 10(44): 38264-38271, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30338974

ABSTRACT

Phototransistors that are based on a hybrid vertical heterojunction structure of two-dimensional (2D)/quantum dots (QDs) have recently attracted attention as a promising device architecture for enhancing the quantum efficiency of photodetectors. However, to optimize the device structure to allow for more efficient charge separation and transfer to the electrodes, a better understanding of the photophysical mechanisms that take place in these architectures is required. Here, we employ a novel concept involving the modulation of the built-in potential within the QD layers for creating a new hybrid MoS2/PbS QDs phototransistor with consecutive type II junctions. The effects of the built-in potential across the depletion region near the type II junction interface in the QD layers are found to improve the photoresponse as well as decrease the response times to 950 µs, which is the faster response time (by orders of magnitude) than that recorded for previously reported 2D/QD phototransistors. Also, by implementing an electric-field modulation of the MoS2 channel, our experimental results reveal that the detectivity can be as large as 1 × 1011 jones. This work demonstrates an important pathway toward designing hybrid phototransistors and mixed-dimensional van der Waals heterostructures.

18.
Opt Lett ; 43(18): 4362-4365, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-30211871

ABSTRACT

We present a flexoelectro-optic liquid crystal (LC) analog phase modulator with >2π phase range at a 1 kHz switching frequency. The chiral nematic LC mixture consists of the bimesogen CBC7CB with chiral dopant R5011, aligned in the uniform lying helix mode. The mixture exhibits >±π/4 rotation of the optic axis for a drive voltage of ±21.5 V (E=±4.5 V µm-1). The rotation of the optic axis is converted into a phase modulation with the aid of a reflective device configuration incorporating a ∼5 µm LC cell, a polarizer, two quarter-wave plates, and a mirror. The residual amplitude modulation is found to be <23%. This flexoelectro-optic phase modulator combination has the potential to enable analog spatial light modulators with very fast frame rates suitable for a range of applications.

19.
ACS Energy Lett ; 3(4): 1036-1043, 2018 Apr 13.
Article in English | MEDLINE | ID: mdl-29774242

ABSTRACT

In a quantum dot solar cell (QDSC) that has an inverted structure, the QD layers form two different junctions between the electron transport layer (ETL) and the other semiconducting QD layer. Recent work on an inverted-structure QDSC has revealed that the junction between the QD layers is the dominant junction, rather than the junction between the ETL and the QD layers, which is in contrast to the conventional wisdom. However, to date, there have been a lack of systematic studies on the role and importance of the QD heterojunction structure on the behavior of the solar cell and the resulting device performance. In this study, we have systematically controlled the structure of the QD junction to balance charge transport, which demonstrates that the position of the junction has a significant effect on the hysteresis effect, fill factor, and solar cell performance and is attributed to balanced charge transport.

20.
Opt Express ; 26(5): 6126-6142, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29529807

ABSTRACT

A new polarimeter is presented which gives time-resolved measurements of both the optic-axis angle and the linear phase retardation for modulated birefringent optical devices. It is suitable for characterizing dynamic waveplate devices based on liquid crystal and other materials. It is fully automated and requires no angular alignment of the device under test. The system has an absolute angle error of < ± 0.3° and a retardance error of < ± 0.44°, with considerably better relative accuracy. The method has been tested with a chiral nematic liquid crystal device exhibiting flexoelectro-optic switching at 3 kHz in the uniform lying helix mode. These results represent the first time-resolved tilt-angle and phase retardation measurements for a liquid crystal device operating at fast switching frequencies.

SELECTION OF CITATIONS
SEARCH DETAIL
...