Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 139(30): 10312-10319, 2017 08 02.
Article in English | MEDLINE | ID: mdl-28671470

ABSTRACT

Multiple-site concerted proton-electron transfer (MS-CPET) reactions were studied in a three-component system. 1-Hydroxy-2,2,6,6-tetramethylpiperidine (TEMPOH) was oxidized to the stable radical TEMPO by electron transfer to ferrocenium oxidants coupled to proton transfer to various pyridine bases. These MS-CPET reactions contrast with the usual reactivity of TEMPOH by hydrogen atom transfer (HAT) to a single e-/H+ acceptor. The three-component reactions proceed by pre-equilibrium formation of a hydrogen-bonded adduct between TEMPOH and the pyridine base, and the adduct is then oxidized by the ferrocenium in a bimolecular MS-CPET step. The second-order rate constants, measured using stopped-flow kinetic techniques, spanned 4 orders of magnitude. An advantage of this system is that the MS-CPET driving force could be independently varied by changing either the pKa of the base or the reduction potential (E°) of the oxidant. Changes in ΔG°MS-CPET from either source had the same effect on the MS-CPET rate constants, and a combined Brønsted plot of ln(kMS-CPET) vs ln(Keq) was linear with a slope of 0.46. These results imply a synchronous concerted mechanism, in which the proton and electron transfer components of the CPET process make equal contributions to the rate constants. The only outliers to the Brønsted correlation are the reactions with sterically hindered pyridines, which apparently hinder the close approach of proton donor and acceptor that facilitates MS-CPET. These three-component reactions are compared with a related HAT reaction of TEMPOH, with the 2,4,6-tri-tert-butylphenoxyl radical. The MS-CPET and HAT oxidations of TEMPOH at the same driving force occurred with similar rate constants. While this is an imperfect comparison, the data suggest that the separation of the proton and electron to different reagents does not significantly inhibit the proton-coupled electron transfer process.


Subject(s)
Electrons , Piperidines/chemistry , Protons , Electron Transport , Hydrogen Bonding , Kinetics , Molecular Structure , Oxidation-Reduction , Thermodynamics
2.
Angew Chem Int Ed Engl ; 54(48): 14407-11, 2015 Nov 23.
Article in English | MEDLINE | ID: mdl-26440694

ABSTRACT

The impact of redox non-innocence (RNI) on chemical reactivity is a forefront theme in coordination chemistry. A diamide diimine ligand, [{-CH=N(1,2-C6H4)NH(2,6-iPr2C6H3)}2](n) (n = 0 to -4), (dadi)(n), chelates Cr and Fe to give [(dadi)M] ([1Cr(thf)] and [1Fe]). Calculations show [1Cr(thf)] (and [1Cr]) to have a d(4) Cr configuration antiferromagnetically coupled to (dadi)(2-)*, and [1Fe] to be S = 2. Treatment with RN3 provides products where RN is formally inserted into the C-C bond of the diimine or into a C-H bond of the diimine. Calculations on the process support a mechanism in which a transient imide (imidyl) aziridinates the diimine, which subsequently ring opens.

3.
Chemistry ; 21(25): 9256-60, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25965413

ABSTRACT

Biological [Fe-S] clusters are increasingly recognized to undergo proton-coupled electron transfer (PCET), but the site of protonation, mechanism, and role for PCET remains largely unknown. Here we explore this reactivity with synthetic model clusters. Protonation of the arylthiolate-ligated [4Fe-4S] cluster [Fe4 S4 (SAr)4 ](2-) (1, SAr=S-2,4-6-(iPr)3 C6 H2 ) leads to thiol dissociation, reversibly forming [Fe4 S4 (SAr)3 L](1-) (2) and ArSH (L=solvent, and/or conjugate base). Solutions of 2+ArSH react with the nitroxyl radical TEMPO to give [Fe4 S4 (SAr)4 ](1-) (1ox ) and TEMPOH. This reaction involves PCET coupled to thiolate association and may proceed via the unobserved protonated cluster [Fe4 S4 (SAr)3 (HSAr)](1-) (1-H). Similar reactions with this and related clusters proceed comparably. An understanding of the PCET thermochemistry of this cluster system has been developed, encompassing three different redox levels and two protonation states.


Subject(s)
Iron-Sulfur Proteins/chemistry , Iron/chemistry , Biological Phenomena , Electron Transport , Electrons , Iron/metabolism , Iron-Sulfur Proteins/metabolism , Nitrogen Oxides/chemistry , Proton Magnetic Resonance Spectroscopy , Protons
4.
Inorg Chem ; 53(14): 7467-84, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-25010819

ABSTRACT

Nacnac-based tridentate ligands containing a pyridyl-methyl and a 2,6-dialkyl-phenylamine (i.e., (2,6-R2-C6H3N═C(Me)CH═C(Me)NH(CH2py); R = Et, {Et(nn)PM}H; R = (i)Pr, {(i)Pr(nn)PM}H) were synthesized by condensation routes. Treatment of M{N(TMS)2}THFn (M = Cr, n = 2; M = Fe, Co, n = 1; TMS = trimethylsilane; THF = tetrahydrofuran) with {(i)Pr(nn)PM}H) afforded {(i)Pr(nn)PM}MN(TMS)2 (1-M(iPr); M = Cr, Fe); {Et(nn)PM}MN(TMS)2 (1-M(Et); M = Fe, Co) was similarly obtained. {R(nn)PM}FeBr (R = (i)Pr, Et; 2-Fe(R)) were prepared from FeBr2 and {R(nn)PM}Li, and alkylated to generate {R(nn)PM}Fe(neo)Pe (R = (i)Pr, Et; 3-Fe(R)). Carbonylation of 3-Fe(R) provided {(i)Pr(nn)PM}Fe(CO(neo)Pe)CO (4-Fe(iPr)), and carbonylations of 1-Fe(R) (R = Et, (i)Pr) and 1-Cr(iPr) induced deamination to afford {R(nn)PI}Fe(CO)2 (R = (i)Pr, 5-Fe(iPr); Et, 5-Fe(Et)), where PI is pyridine-imine, and {κ(2)-N,N-pyrim-pyr}Cr(CO)4 (6-Cr(iPr)), in which the aryl-amide side of the nacnac attacked the incipient PI group. Carbon-carbon bonds were formed at the imine carbon of the {R(nn)PI} ligand. Addition of [{(i)Pr(nn)PI}(2-)](K(+)(THF)x)2 to FeCl3 generated {(i)Pr(nn)CHpy}2Fe2Cl2 (7-Fe(iPr)), and TMSN3 induced the deamination of 1-Fe(Et), but with disproportionation to provide {[Et(nn)CHpy]2}Fe (8-Fe(Et)). Ph2CN2 induced C-C bond formation with 1-Fe(iPr) via its thermal degradation to ultimately afford {(i)Pr(nn)CHpy}2(FeN═CPh2)2 (9-Fe(iPr)). The compounds were examined by X-ray crystallography (1-M(iPr), M = Cr, Fe; 1-Co(Et); 2-Fe(iPr); 4-Fe(iPr); 5-Fe(iPr); 6-Cr(iPr); 7-Fe(iPr); 8-Fe(Et); 9-Fe(iPr)), Mössbauer spectroscopy, and NMR spectroscopy. Structural parameters assessing redox noninnocence are discussed, as are structural and mechanistic consequences of the various electronic environments.


Subject(s)
Chelating Agents/chemistry , Chromium/chemistry , Iron/chemistry , Pyridines/chemistry , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Models, Molecular , Spectroscopy, Mossbauer
5.
Nanotechnology ; 21(16): 165604, 2010 Apr 23.
Article in English | MEDLINE | ID: mdl-20351405

ABSTRACT

Chemical vapor deposition (CVD) with vapor-liquid-solid (VLS) growth is employed to synthesize individual Ge(2)Sb(2)Te(5) nanowires with the ultimate goal of synthesizing a large scale nanowire array for universal memory storage. A consistent challenge encountered during the synthesis is a lack of control over the composition and morphology across the growth substrate. To better understand the challenges associated with the CVD synthesis of the ternary chalcogenide, computational fluid dynamics simulations are performed to quantify 3D thermal and momentum transients in the growth conditions. While these gradients are qualitatively known to exist, they have not been adequately quantified in both the axial and radial directions when under pressure and flow conditions indicative of VLS growth. These data are not easily acquired by conventional means for the axial direction under vacuum and are a considerable challenge to accurately measure radially. The simulation data shown here provide 3D insights into the gradients which ultimately dictate the region of controllable stoichiometry and morphology. These results help explain the observed inhomogeneity of the characterized ternary chalcogenide growth products at various growth substrate locations.


Subject(s)
Chalcogens/chemistry , Crystallization/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Crystallization/instrumentation , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Nanotechnology/instrumentation , Particle Size , Phase Transition , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...