Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Nutrients ; 16(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38732644

ABSTRACT

Diet is integral to the healthy ageing process and certain diets can mitigate prolonged and deleterious inflammation. This review aims to assess the impact of diets high in sustainably sourced proteins on nutrient intake, gut, and age-related health in older adults. A systematic search of the literature was conducted on 5 September 2023 across multiple databases and sources. Studies assessing sustainably sourced protein consumption in community dwelling older adults (≥65 years) were included. Risk of bias (RoB) was assessed using 'RoB 2.0' and 'ROBINS-E'. Narrative synthesis was performed due to heterogeneity of studies. Twelve studies involving 12,166 older adults were included. Nine studies (n = 10,391) assessed habitual dietary intake and had some RoB concerns, whilst three studies (n = 1812), two with low and one with high RoB, conducted plant-based dietary interventions. Increased adherence to sustainably sourced diets was associated with improved gut microbial factors (n = 4640), healthier food group intake (n = 2142), and increased fibre and vegetable protein intake (n = 1078). Sustainably sourced diets positively impacted on gut microbiota and healthier intake of food groups, although effects on inflammatory outcomes and health status were inconclusive. Future research should focus on dietary interventions combining sustainable proteins and fibre to evaluate gut barrier function and consider inflammatory and body composition outcomes in older adults.


Subject(s)
Dietary Proteins , Gastrointestinal Microbiome , Humans , Aged , Gastrointestinal Microbiome/physiology , Dietary Proteins/administration & dosage , Female , Male , Aged, 80 and over , Diet , Dietary Fiber/administration & dosage , Diet, Healthy , Eating/physiology , Independent Living
2.
medRxiv ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38746107

ABSTRACT

Background: Environmental enteric dysfunction (EED) is a syndrome characterized by epithelial damage including blunting of the small intestinal villi and altered digestive and absorptive capacity which may negatively impact linear growth in children. The 13 C-sucrose breath test ( 13 C-SBT) has been proposed to estimate sucrase-isomaltase (SIM) activity, which is thought to be reduced in EED. We previously showed how various summary measures of the 13 C-SBT breath curve reflect SIM inhibition. However, it is uncertain how the performance of these classifiers is affected by test duration. Methods: We leveraged SBT data from a cross-over study in 16 adults who received 0, 100, and 750 mg of Reducose, a natural SIM inhibitor. We evaluated the performance of a pharmacokinetic-model-based classifier, ρ , and three empirical classifiers (cumulative percent dose recovered at 90 minutes (cPDR90), time to 50% dose recovered, and time to peak dose recovery rate), as a function of test duration using receiver operating characteristic curves. We also assessed the sensitivity, specificity, and accuracy of consensus classifiers. Results: Test durations of less than 2 hours generally failed to accurately predict later breath curve dynamics. The cPDR90 classifier had the highest area-under-the-curve and, by design, was robust to shorter test durations. For detecting mild SIM inhibition, ρ had a higher sensitivity. Conclusions: We recommend SBT tests run for at least a 2-hour duration. Although cPDR90 was the classifier with highest accuracy and robustness to test duration in this application, concerns remain about its sensitivity to misspecification of CO 2 production rate. More research is needed to assess these classifiers in target populations.

3.
J Nutr ; 154(3): 815-825, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37995914

ABSTRACT

BACKGROUND: Environmental enteric dysfunction (EED) causes malnutrition in children in low-resource settings. Stable-isotope breath tests have been proposed as noninvasive tests of altered nutrient metabolism and absorption in EED, but uncertainty over interpreting the breath curves has limited their use. The activity of sucrose-isomaltase, the glucosidase enzyme responsible for sucrose hydrolysis, may be reduced in EED. We previously developed a mechanistic model describing the dynamics of the 13C-sucrose breath test (13C-SBT) as a function of underlying metabolic processes. OBJECTIVES: This study aimed to determine which breath test curve dynamics are associated with sucrose hydrolysis and with the transport and metabolism of the fructose and glucose moieties and to propose and evaluate a model-based diagnostic for the loss of activity of sucrase-isomaltase. METHODS: We applied the mechanistic model to 2 sets of exploratory 13C-SBT experiments in healthy adult participants. First, 19 participants received differently labeled sucrose tracers (U-13C fructose, U-13C glucose, and U-13C sucrose) in a crossover study. Second, 16 participants received a sucrose tracer accompanied by 0, 100, and 750 mg of Reducose, a sucrase-isomaltase inhibitor. We evaluated a model-based diagnostic distinguishing between inhibitor concentrations using receiver operator curves, comparing with conventional statistics. RESULTS: Sucrose hydrolysis and the transport and metabolism of the fructose and glucose moieties were reflected in the same mechanistic process. The model distinguishes these processes from the fraction of tracer exhaled and an exponential metabolic process. The model-based diagnostic performed as well as the conventional summary statistics in distinguishing between no and low inhibition [area under the curve (AUC): 0.77 vs. 0.66-0.79] and for low vs. high inhibition (AUC 0.92 vs. 0.91-0.99). CONCLUSIONS: Current summary approaches to interpreting 13C breath test curves may be limited to identifying only gross gut dysfunction. A mechanistic model-based approach improved interpretation of breath test curves characterizing sucrose metabolism.


Subject(s)
Carbohydrate Metabolism, Inborn Errors , Sucrose , Child , Adult , Humans , Sucrase-Isomaltase Complex , Cross-Over Studies , Carbohydrate Metabolism, Inborn Errors/diagnosis , Carbohydrate Metabolism, Inborn Errors/metabolism , Glucose/metabolism , Oligo-1,6-Glucosidase , Breath Tests , Fructose
4.
J Pharmacokinet Pharmacodyn ; 50(3): 203-214, 2023 06.
Article in English | MEDLINE | ID: mdl-36790613

ABSTRACT

Carbon stable isotope breath tests offer new opportunities to better understand gastrointestinal function in health and disease. However, it is often not clear how to isolate information about a gastrointestinal or metabolic process of interest from a breath test curve, and it is generally unknown how well summary statistics from empirical curve fitting correlate with underlying biological rates. We developed a framework that can be used to make mechanistic inference about the metabolic rates underlying a 13C breath test curve, and we applied it to a pilot study of 13C-sucrose breath test in 20 healthy adults. Starting from a standard conceptual model of sucrose metabolism, we determined the structural and practical identifiability of the model, using algebra and profile likelihoods, respectively, and we used these results to develop a reduced, identifiable model as a function of a gamma-distributed process; a slower, rate-limiting process; and a scaling term related to the fraction of the substrate that is exhaled as opposed to sequestered or excreted through urine. We demonstrated how the identifiable model parameters impacted curve dynamics and how these parameters correlated with commonly used breath test summary measures. Our work develops a better understanding of how the underlying biological processes impact different aspect of 13C breath test curves, enhancing the clinical and research potential of these 13C breath tests.


Subject(s)
Breath Tests , Adult , Humans , Pilot Projects , Breath Tests/methods , Carbon Isotopes
5.
Front Med (Lausanne) ; 9: 904339, 2022.
Article in English | MEDLINE | ID: mdl-35966866

ABSTRACT

Objectives: Environmental enteropathy (EE) is a subclinical disorder highly prevalent in tropical and disadvantaged populations and is thought to play a role in growth faltering in children, poor responses to oral vaccines, and micronutrient deficiencies. This study aims to evaluate the potential of a non-invasive breath test based on stable isotopes for evaluation of impaired digestion and absorption of sucrose in EE. Methods: We optimized a 13C-sucrose breath test (13C-SBT) in 19 young adults in Glasgow, United Kingdom. In a further experiment (in 18 adults) we validated the 13C-SBT using Reducose, an intestinal glucosidase inhibitor. We then compared the 13C-SBT to intestinal mucosal morphometry, immunostaining for sucrose-isomaltase (SI) expression, and SI activity in 24 Zambian adults with EE. Results: Fully labeled sucrose (0.3 mg/kg) provided clear breath enrichment signals over 2-3 h in both British and Zambian adults, more than fivefold higher than naturally enriched sucrose. Reducose dramatically impaired 13C-sucrose digestion, reducing 4 h 13CO2 breath recovery by > 50%. Duodenal biopsies in Zambian adults confirmed the presence of EE, and SI immunostaining was present in 16/24 adults. The kinetics of 13CO2 evolution were consistently faster in participants with detectable SI immunostaining. Although sucrase activity was strongly correlated with villus height (r = 0.72; P < 0.05) after adjustment for age, sex and body mass index, there were no correlations between 13C-SBT and villus height or measured sucrase activity in pinch biopsies. Conclusion: A 13C-SBT was developed which was easy to perform, generated clear enrichment of 13CO2 in breath samples, and clearly reports sucrase activity. Further work is needed to validate it and understand its applications in evaluating EE.

6.
Med Sci Sports Exerc ; 54(1): 129-140, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34334720

ABSTRACT

PURPOSE: Beneficial effects of carbohydrate (CHO) ingestion on exogenous CHO oxidation and endurance performance require a well-functioning gastrointestinal (GI) tract. However, GI complaints are common during endurance running. This study investigated the effect of a CHO solution-containing sodium alginate and pectin (hydrogel) on endurance running performance, exogenous and endogenous CHO oxidation, and GI symptoms. METHODS: Eleven trained male runners, using a randomized, double-blind design, completed three 120-min steady-state runs at 68% V˙O2max, followed by a 5-km time-trial. Participants ingested 90 g·h-1 of 2:1 glucose-fructose (13C enriched) as a CHO hydrogel, a standard CHO solution (nonhydrogel), or a CHO-free placebo during the 120 min. Fat oxidation, total and exogenous CHO oxidation, plasma glucose oxidation, and endogenous glucose oxidation from liver and muscle glycogen were calculated using indirect calorimetry and isotope ratio mass spectrometry. GI symptoms were recorded throughout the trial. RESULTS: Time-trial performance was 7.6% and 5.6% faster after hydrogel ([min:s] 19:29 ± 2:24, P < 0.001) and nonhydrogel (19:54 ± 2:23, P = 0.002), respectively, versus placebo (21:05 ± 2:34). Time-trial performance after hydrogel was 2.1% faster (P = 0.033) than nonhydrogel. Absolute and relative exogenous CHO oxidation was greater with hydrogel (68.6 ± 10.8 g, 31.9% ± 2.7%; P = 0.01) versus nonhydrogel (63.4 ± 8.1 g, 29.3% ± 2.0%; P = 0.003). Absolute and relative endogenous CHO oxidation was lower in both CHO conditions compared with placebo (P < 0.001), with no difference between CHO conditions. Absolute and relative liver glucose oxidation and muscle glycogen oxidation were not different between CHO conditions. Total GI symptoms were not different between hydrogel and placebo, but GI symptoms were higher in nonhydrogel compared with placebo and hydrogel (P < 0.001). CONCLUSION: The ingestion of glucose and fructose in hydrogel form during running benefited endurance performance, exogenous CHO oxidation, and GI symptoms compared with a standard CHO solution.


Subject(s)
Athletic Performance/physiology , Fructose/administration & dosage , Gastrointestinal Tract/drug effects , Glucose/administration & dosage , Hydrogels/administration & dosage , Performance-Enhancing Substances/administration & dosage , Running/physiology , Adult , Double-Blind Method , Humans , Male , Oxidation-Reduction , Young Adult
7.
Gut ; 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34103403

ABSTRACT

Gut function remains largely underinvestigated in undernutrition, despite its critical role in essential nutrient digestion, absorption and assimilation. In areas of high enteropathogen burden, alterations in gut barrier function and subsequent inflammatory effects are observable but remain poorly characterised. Environmental enteropathy (EE)-a condition that affects both gut morphology and function and is characterised by blunted villi, inflammation and increased permeability-is thought to play a role in impaired linear growth (stunting) and severe acute malnutrition. However, the lack of tools to quantitatively characterise gut functional capacity has hampered both our understanding of gut pathogenesis in undernutrition and evaluation of gut-targeted therapies to accelerate nutritional recovery. Here we survey the technology landscape for potential solutions to improve assessment of gut function, focussing on devices that could be deployed at point-of-care in low-income and middle-income countries (LMICs). We assess the potential for technological innovation to assess gut morphology, function, barrier integrity and immune response in undernutrition, and highlight the approaches that are currently most suitable for deployment and development. This article focuses on EE and undernutrition in LMICs, but many of these technologies may also become useful in monitoring of other gut pathologies.

8.
Med Sci Sports Exerc ; 53(4): 785-795, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33044437

ABSTRACT

PURPOSE: This study investigated the effect of carbohydrate supplementation on substrate oxidation during exercise in hypoxia after preexercise breakfast consumption and omission. METHODS: Eleven men walked in normobaric hypoxia (FiO2 ~11.7%) for 90 min at 50% of hypoxic V˙O2max. Participants were supplemented with a carbohydrate beverage (1.2 g·min-1 glucose) and a placebo beverage (both enriched with U-13C6 D-glucose) after breakfast consumption and after omission. Indirect calorimetry and isotope ratio mass spectrometry were used to calculate carbohydrate (exogenous and endogenous [muscle and liver]) and fat oxidation. RESULTS: In the first 60 min of exercise, there was no significant change in relative substrate oxidation in the carbohydrate compared with placebo trial after breakfast consumption or omission (both P = 0.99). In the last 30 min of exercise, increased relative carbohydrate oxidation occurred in the carbohydrate compared with placebo trial after breakfast omission (44.0 ± 8.8 vs 28.0 ± 12.3, P < 0.01) but not consumption (51.7 ± 12.3 vs 44.2 ± 10.4, P = 0.38). In the same period, a reduction in relative liver (but not muscle) glucose oxidation was observed in the carbohydrate compared with placebo trials after breakfast consumption (liver, 7.7% ± 1.6% vs 14.8% ± 2.3%, P < 0.01; muscle, 25.4% ± 9.4% vs 29.4% ± 11.1%, P = 0.99) and omission (liver, 3.8% ± 0.8% vs 8.7% ± 2.8%, P < 0.01; muscle, 19.4% ± 7.5% vs 19.2% ± 12.2%, P = 0.99). No significant difference in relative exogenous carbohydrate oxidation was observed between breakfast consumption and omission trials (P = 0.14). CONCLUSION: In acute normobaric hypoxia, carbohydrate supplementation increased relative carbohydrate oxidation during exercise (>60 min) after breakfast omission, but not consumption.


Subject(s)
Breakfast/physiology , Dietary Carbohydrates/metabolism , Hypoxia/physiopathology , Lipid Metabolism/physiology , Walking/physiology , Blood Glucose/analysis , Breath Tests , Calorimetry, Indirect , Dietary Carbohydrates/administration & dosage , Dietary Supplements , Energy Metabolism/physiology , Fatty Acids, Nonesterified/blood , Glycogen/metabolism , Heart Rate , Humans , Hypoxia/blood , Hypoxia/metabolism , Lactic Acid/blood , Liver/metabolism , Male , Mass Spectrometry , Muscle, Skeletal/metabolism , Oxidation-Reduction , Placebos/metabolism , Time Factors , Young Adult
9.
Crit Rev Food Sci Nutr ; 61(22): 3892-3903, 2021.
Article in English | MEDLINE | ID: mdl-32865002

ABSTRACT

Short chain fatty acids (SCFA) are produced by bacterial fermentation of non-digestible carbohydrates (NDC) and have many potential tissue and SCFA specific actions, from providing fuel for colonic cells to appetite regulation. Many studies have described the fermentation of different carbohydrates, often using in vitro batch culture. As evidence-based critical evaluation of substrates selectively promoting production of individual SCFA is lacking, we performed a systematic scoping literature review. Databases were searched to identify relevant papers published between 1900 and 12/06/2016. Search terms included In vitro batch fermentation and In vitro short chain fatty acid production. Articles were considered for essential criteria allowing equivalent comparison of SCFA between NDC. Seventy seven articles were included in the final analysis examining 29 different carbohydrates. After 24-hour fermentation, galacto-oligosaccharide ranked highest for butyrate and total SCFA production and second for acetate production. Rhamnose ranked highest for propionate production. The lowest SCFA production was observed for kiwi fiber, polydextrose, and cellulose. This review demonstrates that choosing a substrate to selectively enhance a specific SCFA is difficult, and the molar proportion of each SCFA produced by individual substrates may be misleading. Instead the rate and ratio of SCFA production should be evaluated in parallel.


Subject(s)
Carbohydrate Metabolism , Fatty Acids, Volatile/biosynthesis , Gastrointestinal Microbiome , Butyrates , Carbohydrates , Dietary Fiber , Feces , Fermentation , Humans
10.
Nutrients ; 12(6)2020 May 28.
Article in English | MEDLINE | ID: mdl-32481553

ABSTRACT

Polyphenols are often ingested alongside dietary fibres. They are both catabolised by, and may influence, the intestinal microbiota; yet, interactions between them and the impact on their resultant microbial products are poorly understood. Dietary fibres (inulin, pectin, psyllium, pyrodextrin, wheat bran, cellulose-three doses) were fermented in vitro with human faeces (n = 10) with and without rutin (20 µg/mL), a common dietary flavonol glycoside. Twenty-eight phenolic metabolites and short chain fatty acids (SCFA) were measured over 24 h. Several phenolic metabolites were produced during fibre fermentation, without rutin. With rutin, 3,4-dihydroxyphenylacetic acid (3,4diOHPAA), 3-hydroxyphenylacetic acid (3OHPAA), 3-(3 hydroxyphenyl)propionic acid (3OHPPA) and 3-(3,4-dihydroxyphenyl)propionic acid (3,4diOHPPA; DOPAC) were produced, with 3,4diOHPAA the most abundant, confirmed by fermentation of 13C labelled quercetin. The addition of inulin, wheat bran or pyrodextrin increased 3,4diOHPAA 2 2.5-fold over 24 h (p < 0.05). Rutin affected SCFA production, but this depended on fibre, fibre concentration and timepoint. With inulin, rutin increased pH at 6 h from 4.9 to 5.6 (p = 0.01) but increased propionic, butyric and isovaleric acid (1.9, 1.6 and 5-fold, p < 0.05 at 24 h). Interactions between fibre and phenolics modify production of phenolic acids and SCFA and may be key in enhancing health benefits.


Subject(s)
Dietary Fiber/pharmacology , Fermentation , Gastrointestinal Microbiome/physiology , Hydroxybenzoates/metabolism , Rutin/metabolism , Adult , Fatty Acids, Volatile/metabolism , Female , Humans , In Vitro Techniques , Male , Young Adult
11.
Nat Food ; 1(11): 693-704, 2020 Nov.
Article in English | MEDLINE | ID: mdl-37128029

ABSTRACT

Elevated postprandial glucose (PPG) is a significant risk factor for non-communicable diseases globally. Currently, there is a limited understanding of how starch structures within a carbohydrate-rich food matrix interact with the gut luminal environment to control PPG. Here, we use pea seeds (Pisum sativum) and pea flour, derived from two near-identical pea genotypes (BC1/19RR and BC1/19rr) differing primarily in the type of starch accumulated, to explore the contribution of starch structure, food matrix and intestinal environment to PPG. Using stable isotope 13C-labelled pea seeds, coupled with synchronous gastric, duodenal and plasma sampling in vivo, we demonstrate that maintenance of cell structure and changes in starch morphology are closely related to lower glucose availability in the small intestine, resulting in acutely lower PPG and promotion of changes in the gut bacterial composition associated with long-term metabolic health improvements.

12.
Metabolism ; 104: 154043, 2020 03.
Article in English | MEDLINE | ID: mdl-31790692

ABSTRACT

BACKGROUND: Our previous work has shown that oral supplementation with inulin propionate ester (IPE) reduces intra-abdominal fat and prevents weight gain and that oral propionate intake enhances resting fat oxidation. The effects of IPE combined with exercise training on energy substrate utilisation are unknown. The aim of this study was to investigate the impact of 4-weeks IPE supplementation, in combination with a moderate intensity exercise training programme, on whole body fat oxidation and on plasma GLP-1 and PYY. METHODS: Twenty overweight healthy women participated in randomised parallel study and underwent 4 weeks of supervised exercise training either with IPE (EX/IPE group) or Placebo (EX/Placebo group) supplementation. Before and after the intervention participants conducted an experimental trial, which involved collection of expired gas and blood samples in the fasted state and during 7 h of the postprandial state. RESULTS: Within groups, the EX/IPE group significantly enhanced the amount of fat (Pre, 24.1 ±â€¯1.2 g; Post, 35.9 ±â€¯4.0 g, P < 0.05) oxidised and reduced CHO (Pre, 77.8 ±â€¯6.0 g; Post, 57.8 ±â€¯7.7 g, P < 0.05) oxidised, reduced body weight (Pre, 77.3 ±â€¯4.2 kg; Post, 76.6 ±â€¯4.1 kg, P < 0.05) and body fat mass (Pre, 37.7 ±â€¯1.9%; Post, 36.9 ±â€¯1.9%, P < 0.05). In EX/Placebo group, changes in amount of fat (Pre, 36.8 ±â€¯3.9 g; Post, 37.0 ±â€¯4.0 g) and CHO (Pre, 62.7 ±â€¯6.5 g; Post, 61.5 ±â€¯7.4 g) oxidised, body weight (Pre, 84.2 ±â€¯4.3 kg; Post, 83.6 ±â€¯4.3 kg) and body fat mass (Pre, 40.1 ±â€¯1.9%; Post, 38.7 ±â€¯1.5%) were not significant (P > 0.05). Comparing between groups, changes in the amount of fat oxidised were significantly (P < 0.05) different and a trend for difference was observed for amount of CHO oxidised (P = 0.06) and RER (P = 0.06). The interventions had no impact on fasting or postprandial plasma concentrations of GLP-1 and PYY. CONCLUSION: Moderate intensity exercise training programmes when combined with daily oral IPE supplementation may help overweight women to achieve increase in fat oxidation. The study was registered at clinicaltrials.gov as NCT04016350.


Subject(s)
Dietary Fats/metabolism , Exercise , Hypoglycemic Agents/therapeutic use , Inulin/therapeutic use , Overweight/metabolism , Overweight/therapy , Propionates/therapeutic use , Adiposity , Adult , Appetite , Body Weight , Combined Modality Therapy , Dietary Supplements , Female , Hormones/metabolism , Humans , Middle Aged , Oxidation-Reduction , Single-Blind Method
13.
Nutr Rev ; 78(6): 486-497, 2020 06 01.
Article in English | MEDLINE | ID: mdl-31841152

ABSTRACT

The world's population is expanding, leading to an increased global requirement for dietary protein to support health and adaptation in various populations. Though a strong evidence base supports the nutritional value of animal-derived dietary proteins, mounting challenges associated with sustainability of these proteins have led to calls for the investigation of alternative, non-animal-derived dietary protein sources. Mycoprotein is a sustainably produced, protein-rich, high-fiber, whole food source derived from the fermentation of fungus. Initial investigations in humans demonstrated that mycoprotein consumption can lower circulating cholesterol concentrations. Recent data also report improved acute postprandial glycemic control and a potent satiety effect following mycoprotein ingestion. It is possible that these beneficial effects are attributable to the amount and type of dietary fiber present in mycoprotein. Emerging data suggest that the amino acid composition and bioavailability of mycoprotein may also position it as a promising dietary protein source to support skeletal muscle protein metabolism. Mycoprotein may be a viable dietary protein source to promote training adaptations in athletes and the maintenance of muscle mass to support healthy aging. Herein, current evidence underlying the metabolic effects of mycoprotein is reviewed, and the key questions to be addressed are highlighted.


Subject(s)
Dietary Fiber/pharmacology , Dietary Proteins/pharmacology , Fungal Proteins/pharmacology , Muscle, Skeletal/drug effects , Body Weight , Humans , Metabolic Diseases/prevention & control , Sarcopenia/prevention & control
14.
Med Sci Sports Exerc ; 51(12): 2586-2594, 2019 12.
Article in English | MEDLINE | ID: mdl-31206498

ABSTRACT

PURPOSE: This study compared the coingestion of glucose and fructose on exogenous and endogenous substrate oxidation during prolonged exercise at terrestrial high altitude (HA) versus sea level, in women. METHOD: Five women completed two bouts of cycling at the same relative workload (55% Wmax) for 120 min on acute exposure to HA (3375 m) and at sea level (~113 m). In each trial, participants ingested 1.2 g·min of glucose (enriched with C glucose) and 0.6 g·min of fructose (enriched with C fructose) before and every 15 min during exercise. Indirect calorimetry and isotope ratio mass spectrometry were used to calculate fat oxidation, total and exogenous carbohydrate oxidation, plasma glucose oxidation, and endogenous glucose oxidation derived from liver and muscle glycogen. RESULTS: The rates and absolute contribution of exogenous carbohydrate oxidation was significantly lower at HA compared with sea level (effect size [ES] > 0.99, P < 0.024), with the relative exogenous carbohydrate contribution approaching significance (32.6% ± 6.1% vs 36.0% ± 6.1%, ES = 0.56, P = 0.059) during the second hour of exercise. In comparison, no significant differences were observed between HA and sea level for the relative and absolute contributions of liver glucose (3.2% ± 1.2% vs 3.1% ± 0.8%, ES = 0.09, P = 0.635 and 5.1 ± 1.8 vs 5.4 ± 1.7 g, ES = 0.19, P = 0.217), and muscle glycogen (14.4% ± 12.2% vs 15.8% ± 9.3%, ES = 0.11, P = 0.934 and 23.1 ± 19.0 vs 28.7 ± 17.8 g, ES = 0.30, P = 0.367). Furthermore, there was no significant difference in total fat oxidation between HA and sea level (66.3 ± 21.4 vs 59.6 ± 7.7 g, ES = 0.32, P = 0.557). CONCLUSIONS: In women, acute exposure to HA reduces the reliance on exogenous carbohydrate oxidation during cycling at the same relative exercise intensity.


Subject(s)
Altitude , Energy Drinks , Energy Metabolism , Exercise/physiology , Fructose/administration & dosage , Glycogen/administration & dosage , Hypoxia/physiopathology , Bicycling/physiology , Blood Glucose/metabolism , Female , Fructose/metabolism , Glycogen/metabolism , Humans , Liver Glycogen/metabolism , Muscle, Skeletal/metabolism , Oxidation-Reduction
15.
Gut ; 68(8): 1430-1438, 2019 08.
Article in English | MEDLINE | ID: mdl-30971437

ABSTRACT

OBJECTIVE: To investigate the underlying mechanisms behind changes in glucose homeostasis with delivery of propionate to the human colon by comprehensive and coordinated analysis of gut bacterial composition, plasma metabolome and immune responses. DESIGN: Twelve non-diabetic adults with overweight and obesity received 20 g/day of inulin-propionate ester (IPE), designed to selectively deliver propionate to the colon, a high-fermentable fibre control (inulin) and a low-fermentable fibre control (cellulose) in a randomised, double-blind, placebo-controlled, cross-over design. Outcome measurements of metabolic responses, inflammatory markers and gut bacterial composition were analysed at the end of each 42-day supplementation period. RESULTS: Both IPE and inulin supplementation improved insulin resistance compared with cellulose supplementation, measured by homeostatic model assessment 2 (mean±SEM 1.23±0.17 IPE vs 1.59±0.17 cellulose, p=0.001; 1.17±0.15 inulin vs 1.59±0.17 cellulose, p=0.009), with no differences between IPE and inulin (p=0.272). Fasting insulin was only associated positively with plasma tyrosine and negatively with plasma glycine following inulin supplementation. IPE supplementation decreased proinflammatory interleukin-8 levels compared with cellulose, while inulin had no impact on the systemic inflammatory markers studied. Inulin promoted changes in gut bacterial populations at the class level (increased Actinobacteria and decreased Clostridia) and order level (decreased Clostridiales) compared with cellulose, with small differences at the species level observed between IPE and cellulose. CONCLUSION: These data demonstrate a distinctive physiological impact of raising colonic propionate delivery in humans, as improvements in insulin sensitivity promoted by IPE and inulin were accompanied with different effects on the plasma metabolome, gut bacterial populations and markers of systemic inflammation.


Subject(s)
Gastrointestinal Microbiome/physiology , Insulin/metabolism , Inulin , Metabolome/physiology , Obesity , Overweight , Adult , Body Mass Index , Cross-Over Studies , Dietary Supplements , Double-Blind Method , Feces/microbiology , Female , Humans , Inflammation/metabolism , Insulin Resistance/physiology , Inulin/administration & dosage , Inulin/metabolism , Male , Middle Aged , Obesity/diagnosis , Obesity/diet therapy , Obesity/metabolism , Overweight/diagnosis , Overweight/diet therapy , Overweight/metabolism , Propionates/administration & dosage , Propionates/metabolism , Treatment Outcome
16.
Nutrients ; 11(4)2019 Apr 08.
Article in English | MEDLINE | ID: mdl-30965613

ABSTRACT

Dietary mycoprotein (marketed as QuornTM) has many health benefits, including reductions in energy intake. The majority of studies evaluating mycoprotein focus on the protein content and very few consider the fibre content. Fibre consumption is also associated with decreased energy intake, which is partly attributed to short chain fatty acids (SCFAs) from fibre fermentation by colonic bacteria. To study the SCFA-producing capability of mycoprotein, in vitro batch fermentations were conducted, and SCFA production compared with that from extracted mycoprotein fibre, oligofructose (OF), rhamnose, and laminarin. Mycoprotein and mycoprotein fibre were both fermentable, resulting in a total SCFA production of 24.9 (1.7) and 61.2 (15.7) mmol/L, respectively. OF led to a significantly higher proportion of acetate compared to all other substrates tested (92.6 (2.8)%, p < 0.01). Rhamnose generated the highest proportion of propionate (45.3 (2.0)%, p < 0.01), although mycoprotein and mycoprotein fibre yielded a higher proportion of propionate compared with OF and laminarin. Butyrate proportion was the highest with laminarin (28.0 (10.0)although mycoprotein fibre led to a significantly higher proportion than OF (p < 0.01). Mycoprotein is a valuable source of dietary protein, but its fibre content is also of interest. Further evaluation of the potential roles of the fibre content of mycoprotein is required.


Subject(s)
Bacterial Proteins/physiology , Dietary Fiber/metabolism , Fatty Acids, Volatile/biosynthesis , Fermentation/physiology , Gastrointestinal Microbiome/physiology , Colon/metabolism , Colon/microbiology , Humans
17.
Nutrients ; 11(4)2019 Apr 16.
Article in English | MEDLINE | ID: mdl-30995824

ABSTRACT

Supplementation with inulin-propionate ester (IPE), which delivers propionate to the colon, suppresses ad libitum energy intake and stimulates the release of satiety hormones acutely in humans, and prevents weight gain. In order to determine whether IPE remains effective when incorporated into food products (FP), IPE needs to be added to a widely accepted food system. A bread roll and fruit smoothie were produced. Twenty-one healthy overweight and obese humans participated. Participants attended an acclimatisation visit and a control visit where they consumed un-supplemented food products (FP). Participants then consumed supplemented-FP, containing 10 g/d inulin or IPE for six days followed by a post-supplementation visit in a randomised crossover design. On study visits, supplemented-FP were consumed for the seventh time and ad libitum energy intake was assessed 420 min later. Blood samples were collected to assess hormones and metabolites. Resting energy expenditure (REE) was measured using indirect calorimetry. Taste and appearance ratings were similar between FP. Ad libitum energy intake was significantly different between treatments, due to a decreased intake following IPE-FP. These observations were not related to changes in blood hormones and metabolites. There was an increase in REE following IPE-FP. However, this effect was lost after correcting for changes in fat free mass. Our results suggest that IPE suppresses appetite and may alter REE following its incorporation into palatable food products.


Subject(s)
Appetite/drug effects , Basal Metabolism/drug effects , Dietary Supplements , Food Handling , Inulin/pharmacology , Obesity , Propionates/pharmacology , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use , Calorimetry, Indirect , Colon , Cross-Over Studies , Double-Blind Method , Energy Intake/drug effects , Female , Hormones/blood , Humans , Inulin/therapeutic use , Male , Middle Aged , Obesity/diet therapy , Obesity/metabolism , Obesity/physiopathology , Overweight , Propionates/therapeutic use , Rest , Satiety Response/drug effects , Taste
18.
Eur J Appl Physiol ; 119(5): 1157-1169, 2019 May.
Article in English | MEDLINE | ID: mdl-30840136

ABSTRACT

PURPOSE: This study investigated the effect of small manipulations in carbohydrate (CHO) dose on exogenous and endogenous (liver and muscle) fuel selection during exercise. METHOD: Eleven trained males cycled in a double-blind randomised order on 4 occasions at 60% [Formula: see text] for 3 h, followed by a 30-min time-trial whilst ingesting either 80 g h-1 or 90 g h-1 or 100 g h-1 13C-glucose-13C-fructose [2:1] or placebo. CHO doses met, were marginally lower, or above previously reported intestinal saturation for glucose-fructose (90 g h-1). Indirect calorimetry and stable mass isotope [13C] techniques were utilised to determine fuel use. RESULT: Time-trial performance was 86.5 to 93%, 'likely, probable' improved with 90 g h-1 compared 80 and 100 g h-1. Exogenous CHO oxidation in the final hour was 9.8-10.0% higher with 100 g h-1 compared with 80 and 90 g h-1 (ES = 0.64-0.70, 95% CI 9.6, 1.4 to 17.7 and 8.2, 2.1 to 18.6). However, increasing CHO dose (100 g h-1) increased muscle glycogen use (101.6 ± 16.6 g, ES = 0.60, 16.1, 0.9 to 31.4) and its relative contribution to energy expenditure (5.6 ± 8.4%, ES = 0.72, 5.6, 1.5 to 9.8 g) compared with 90 g h-1. Absolute and relative muscle glycogen oxidation between 80 and 90 g h-1 were similar (ES = 0.23 and 0.38) though a small absolute (85.4 ± 29.3 g, 6.2, - 23.5 to 11.1) and relative (34.9 ± 9.1 g, - 3.5, - 9.6 to 2.6) reduction was seen in 90 g h-1 compared with 100 g h-1. Liver glycogen oxidation was not significantly different between conditions (ES < 0.42). Total fat oxidation during the 3-h ride was similar in CHO conditions (ES < 0.28) but suppressed compared with placebo (ES = 1.05-1.51). CONCLUSION: 'Overdosing' intestinal transport for glucose-fructose appears to increase muscle glycogen reliance and negatively impact subsequent TT performance.


Subject(s)
Exercise Tolerance/drug effects , Exercise , Fructose/pharmacology , Glucose/pharmacology , Liver Glycogen/metabolism , Muscle, Skeletal/metabolism , Administration, Oral , Adult , Double-Blind Method , Fructose/administration & dosage , Glucose/administration & dosage , Humans , Liver/drug effects , Liver/metabolism , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology , Oxidation-Reduction
19.
Diabetes Obes Metab ; 21(2): 372-376, 2019 02.
Article in English | MEDLINE | ID: mdl-30098126

ABSTRACT

The short chain fatty acid (SCFA) propionate, produced through fermentation of dietary fibre by the gut microbiota, has been shown to alter hepatic metabolic processes that reduce lipid storage. We aimed to investigate the impact of raising colonic propionate production on hepatic steatosis in adults with non-alcoholic fatty liver disease (NAFLD). Eighteen adults were randomized to receive 20 g/d of an inulin-propionate ester (IPE), designed to deliver propionate to the colon, or an inulin control for 42 days in a parallel design. The change in intrahepatocellular lipid (IHCL) following the supplementation period was not different between the groups (P = 0.082), however, IHCL significantly increased within the inulin-control group (20.9% ± 2.9% to 26.8% ± 3.9%; P = 0.012; n = 9), which was not observed within the IPE group (22.6% ± 6.9% to 23.5% ± 6.8%; P = 0.635; n = 9). The predominant SCFA from colonic fermentation of inulin is acetate, which, in a background of NAFLD and a hepatic metabolic profile that promotes fat accretion, may provide surplus lipogenic substrate to the liver. The increased colonic delivery of propionate from IPE appears to attenuate this acetate-mediated increase in IHCL.


Subject(s)
Dietary Supplements , Fatty Acids, Volatile/pharmacology , Inulin/pharmacology , Non-alcoholic Fatty Liver Disease/diet therapy , Propionates/pharmacology , Adolescent , Adult , Aged , Esters/pharmacology , Female , Gastrointestinal Microbiome/drug effects , Humans , Lipid Metabolism/drug effects , Liver/drug effects , Liver/metabolism , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Young Adult
20.
Sci Rep ; 8(1): 15566, 2018 10 22.
Article in English | MEDLINE | ID: mdl-30349136

ABSTRACT

Dietary fibers (DF) can prevent obesity in rodents fed a high-fat diet (HFD). Their mode of action is not fully elucidated, but the gut microbiota have been implicated. This study aimed to identify the effects of seven dietary fibers (barley beta-glucan, apple pectin, inulin, inulin acetate ester, inulin propionate ester, inulin butyrate ester or a combination of inulin propionate ester and inulin butyrate ester) effective in preventing diet-induced obesity and links to differences in cecal bacteria and host gene expression. Mice (n = 12) were fed either a low-fat diet (LFD), HFD or a HFD supplemented with the DFs, barley beta-glucan, apple pectin, inulin, inulin acetate ester, inulin propionate ester, inulin butyrate ester or a combination of inulin propionate ester and inulin butyrate ester for 8 weeks. Cecal bacteria were determined by Illumina MiSeq sequencing of 16S rRNA gene amplicons. Host responses, body composition, metabolic markers and gene transcription (cecum and liver) were assessed post intervention. HFD mice showed increased adiposity, while all of the DFs prevented weight gain. DF specific differences in cecal bacteria were observed. Results indicate that diverse DFs prevent weight gain on a HFD, despite giving rise to different cecal bacteria profiles. Conversely, common host responses to dietary fiber observed are predicted to be important in improving barrier function and genome stability in the gut, maintaining energy homeostasis and reducing HFD induced inflammatory responses in the liver.


Subject(s)
Dietary Fiber/therapeutic use , Gastrointestinal Microbiome , Obesity/diet therapy , Animals , Cecum/metabolism , Cecum/microbiology , Dietary Fiber/administration & dosage , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...