Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 9(1): e85011, 2014.
Article in English | MEDLINE | ID: mdl-24465468

ABSTRACT

Decentralized stormwater management approaches (e.g., biofiltration swales, pervious pavement, green roofs, rain gardens) that capture, detain, infiltrate, and filter runoff are now commonly used to minimize the impacts of stormwater runoff from impervious surfaces on aquatic ecosystems. However, there is little research on the effectiveness of retrofit, parcel-scale stormwater management practices for improving downstream aquatic ecosystem health. A reverse auction was used to encourage homeowners to mitigate stormwater on their property within the suburban, 1.8 km(2) Shepherd Creek catchment in Cincinnati, Ohio (USA). In 2007-2008, 165 rain barrels and 81 rain gardens were installed on 30% of the properties in four experimental (treatment) subcatchments, and two additional subcatchments were maintained as controls. At the base of the subcatchments, we sampled monthly baseflow water quality, and seasonal (5×/year) physical habitat, periphyton assemblages, and macroinvertebrate assemblages in the streams for the three years before and after treatment implementation. Given the minor reductions in directly connected impervious area from the rain barrel installations (11.6% to 10.4% in the most impaired subcatchment) and high total impervious levels (13.1% to 19.9% in experimental subcatchments), we expected minor or no responses of water quality and biota to stormwater management. There were trends of increased conductivity, iron, and sulfate for control sites, but no such contemporaneous trends for experimental sites. The minor effects of treatment on streamflow volume and water quality did not translate into changes in biotic health, and the few periphyton and macroinvertebrate responses could be explained by factors not associated with the treatment (e.g., vegetation clearing, drought conditions). Improvement of overall stream health is unlikely without additional treatment of major impervious surfaces (including roads, apartment buildings, and parking lots). Further research is needed to define the minimum effect threshold and restoration trajectories for retrofitting catchments to improve the health of stream ecosystems.


Subject(s)
Biota , Conservation of Natural Resources , Rain , Residence Characteristics , Rivers , Suburban Population , Water Quality , Analysis of Variance , Animals , Biomass , Filtration , Geography , Invertebrates/physiology , Ohio , Water Movements
2.
J Environ Qual ; 34(5): 1610-9, 2005.
Article in English | MEDLINE | ID: mdl-16091614

ABSTRACT

Particulate matter in urban rivers transports a significant fraction of pollutants, changes rapidly during storm events, and is difficult to characterize. In this study, the physical speciation of trace metals and organic C in an urban river and upstream headwaters site in Torrington, CT, were measured during a winter rain-on-snow event. In addition, a selective fractionation scheme, using membrane and tangential-flow ultrafiltration methods to separate suspended particulate matter into sand, silt, clay, and colloid fractions, was evaluated based on the appropriateness of the chosen size categories. During peak runoff at the urban river site, total-recoverable concentrations of the metals Cu and Pb increased 6- and 13-fold to 16.9 and 9.5 microg L(-1), respectively, compared with baseflow concentrations. Concentrations of Cu and Pb reached only 0.9 and 0.86 microg L(-1) at the headwaters site. For the measured storm event, the majority of metals were transported by the urban river in association with coarse silt (20-80 microm particle diam.) during peak runoff. During peak runoff at the urban site, organic C associated with the large colloid fraction (0.1-1.0 microm) increased from 5% (at baseflow) to 54% of the total C in transport, whereas dissolved organic C and that associated with smaller colloids decreased from 91.5% (at baseflow) to 41% of the total. Other elements that were monitored as part of the study were Na, K, Ca, Mg, Fe, Mn, Al, Cd, Cl-, NO3(-), and SO4(2-). The chosen fractionation scheme was useful to characterize pollutant transport during this event, but further testing should be undertaken to determine the most appropriate size range categories, and to ensure that the sizes measured are comparable to those used in other studies.


Subject(s)
Metals, Heavy/analysis , Rivers/chemistry , Seasons , Water Pollutants, Chemical/analysis , Connecticut , Rain , Snow , Spectrophotometry, Atomic , Ultrafiltration
3.
Environ Sci Technol ; 38(24): 6817-23, 2004 Dec 15.
Article in English | MEDLINE | ID: mdl-15669344

ABSTRACT

Artifacts associated with the fractionation of colloids in a freshwater sample were investigated for conventional membrane filtration (0.45 microm cutoff), and two tangential flow ultrafiltration cartridges (0.1 microm cutoff and 3000 MW cutoff). Membrane clogging during conventional filtration removed some colloids smaller than 0.1 microm in diameter, much smaller than the nominal size of the filter. For certain constituents (e.g., Fe), filter clogging had a significant effect on filtrate concentrations, while artifacts associated with tangential flow ultrafiltration using a 0.1 microm cutoff were minimal. Artifacts occurred during tangential flow ultrafiltration with a 3000 MW cutoff, but did not deviate from predicted changes in concentration based on a standard permeation model. Comparison of filtrate concentrations for membrane filtration (at 1.0 and 0.45 microm) and tangential flow ultrafiltration (at 0.1 microm) for a large number of samples from Connecticut rivers shows that significant and consistent differences exist between their separation characteristics. Results for organic carbon, Fe, Mn, Al, Cu, and Pb demonstrate the magnitude of the effects of the fractionation technique on filtrate element concentration, show variability by element and flow condition, and highlight the importance of larger colloids to freshwater metal speciation. One implication of the research is that tangential flow ultrafiltration with large size cutoff membranes (e.g., approximately 0.1 microm) may be superior to conventional filtration with filters in the same size discrimination range, and potentially more appropriate for the fractionation of natural water samples.


Subject(s)
Colloids/analysis , Environmental Monitoring/standards , Water Pollutants/analysis , Artifacts , Filtration , Membranes, Artificial , Particle Size , Sensitivity and Specificity , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...