Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Softw Impacts ; 12: 100252, 2022 May.
Article in English | MEDLINE | ID: mdl-35187502

ABSTRACT

The ongoing pandemic of COVID-19 has highlighted the importance of mathematical tools to understand and predict outbreaks of severe infectious diseases, including arboviruses such as Zika. To this end, we introduce ARBO, a package for simulation and analysis of arbovirus nonlinear dynamics. The implementation follows a minimalist style, and is intuitive and extensible to many settings of vector-borne disease outbreaks. This paper outlines the main tools that compose ARBO, discusses how recent research works about the Brazilian Zika outbreak have explored the package's capabilities, and describes its potential impact for future works on mathematical epidemiology.

2.
Entropy (Basel) ; 22(11)2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33287078

ABSTRACT

In many applications of interacting systems, we are only interested in the dynamic behavior of a subset of all possible active species. For example, this is true in combustion models (many transient chemical species are not of interest in a given reaction) and in epidemiological models (only certain subpopulations are consequential). Thus, it is common to use greatly reduced or partial models in which only the interactions among the species of interest are known. In this work, we explore the use of an embedded, sparse, and data-driven discrepancy operator to augment these partial interaction models. Preliminary results show that the model error caused by severe reductions-e.g., elimination of hundreds of terms-can be captured with sparse operators, built with only a small fraction of that number. The operator is embedded within the differential equations of the model, which allows the action of the operator to be interpretable. Moreover, it is constrained by available physical information and calibrated over many scenarios. These qualities of the discrepancy model-interpretability, physical consistency, and robustness to different scenarios-are intended to support reliable predictions under extrapolative conditions.

3.
Chaos ; 30(5): 051103, 2020 May.
Article in English | MEDLINE | ID: mdl-32491876

ABSTRACT

Mathematical models of epidemiological systems enable investigation of and predictions about potential disease outbreaks. However, commonly used models are often highly simplified representations of incredibly complex systems. Because of these simplifications, the model output, of, say, new cases of a disease over time or when an epidemic will occur, may be inconsistent with the available data. In this case, we must improve the model, especially if we plan to make decisions based on it that could affect human health and safety, but direct improvements are often beyond our reach. In this work, we explore this problem through a case study of the Zika outbreak in Brazil in 2016. We propose an embedded discrepancy operator-a modification to the model equations that requires modest information about the system and is calibrated by all relevant data. We show that the new enriched model demonstrates greatly increased consistency with real data. Moreover, the method is general enough to easily apply to many other mathematical models in epidemiology.


Subject(s)
Models, Theoretical , Zika Virus Infection/epidemiology , Brazil/epidemiology , Disease Outbreaks , Humans , Zika Virus
4.
Chaos ; 21(4): 043108, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22225345

ABSTRACT

By treating combinatorial games as dynamical systems, we are able to address a longstanding open question in combinatorial game theory, namely, how the introduction of a "pass" move into a game affects its behavior. We consider two well known combinatorial games, 3-pile Nim and 3-row Chomp. In the case of Nim, we observe that the introduction of the pass dramatically alters the game's underlying structure, rendering it considerably more complex, while for Chomp, the pass move is found to have relatively minimal impact. We show how these results can be understood by recasting these games as dynamical systems describable by dynamical recursion relations. From these recursion relations, we are able to identify underlying structural connections between these "games with passes" and a recently introduced class of "generic (perturbed) games." This connection, together with a (non-rigorous) numerical stability analysis, allows one to understand and predict the effect of a pass on a game.


Subject(s)
Game Theory , Models, Statistical , Nonlinear Dynamics , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...