Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Regul Toxicol Pharmacol ; 149: 105627, 2024 May.
Article in English | MEDLINE | ID: mdl-38621522

ABSTRACT

CropLife Europe collected literature values from monitoring studies measuring air concentrations of Plant Protection Products (PPPs) that may be inhaled by humans located in rural areas but not immediately adjacent to PPP applications. The resulting "Combined Air Concentration Database" (CACD) was used to determine whether air concentrations of PPPs reported by the French "Agency for Food, Environmental and Occupational Health & Safety" (ANSES) are consistent with those measured by others to increase confidence in values of exposure to humans. The results were put into risk assessment context. Results show that 25-90% of samples do not contain measurable PPP concentrations. Measured respirable fractions were below EU default air concentrations used for risk assessment for resident exposure by the European Food Safety Authority. All measured exposures in the CACD were also below established toxicological endpoints, even when considering the highest maximum average reported concentrations and very conservative inhalation rates. The highest recorded air concentration was for prosulfocarb (0.696 µg/m³ measured over 48 h) which is below the EFSA default limit of 1 µg/m³ for low volatility substances. In conclusion, based on the CACD, measured air concentrations of PPPs are significantly lower than EFSA default limits and relevant toxicological reference values.


Subject(s)
Air Pollutants , Databases, Factual , Environmental Monitoring , Risk Assessment , Humans , Air Pollutants/analysis , Environmental Monitoring/methods , Inhalation Exposure/analysis , Inhalation Exposure/adverse effects
2.
Regul Toxicol Pharmacol ; 102: 1-12, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30543831

ABSTRACT

Physiologically-based toxicokinetic (PBTK) models are mathematical representations of chemical absorption, distribution, metabolism and excretion (ADME) in animals. Each parameter in a PBTK model describes a physiological, physicochemical or biochemical process that affects ADME. Distributions can be assigned to the model parameters to describe population variability and uncertainty. In this study to assess potential crop sprayer operator exposure to the herbicide haloxyfop, a permeability-limited PBTK model was constructed with parameter uncertainty and variability, and calibrated using Bayesian analysis via Markov chain Monte Carlo methods. A hierarchical statistical model was developed to reconstruct operator exposure using available measurement data: experimentally determined octanol/water partition coefficient, mouse and human toxicokinetic data as well as human biomonitoring data from seven operators who participated in a field study. A chemical risk assessment was performed by comparing the estimated systemic exposure to the acceptable operator exposure level (AOEL). The analysis suggested that in one of the seven operators, the model estimates systemic exposure to haloxyfop of 49.04 ±â€¯10.19 SD µg/kg bw in relation to an AOEL of 5.0 µg/kg bw/day. This does not represent a safety concern as this predicted exposure is well within the 100-fold uncertainty factor applied to the No Observed Adverse Effect Level (NOAEL) in animals. In addition, given the availability of human toxicokinetic data, the 10x uncertainty factor for interspecies differences in ADME could be reduced (EFSA, 2006). Thus the AOEL could potentially be raised tenfold from 5.0 to 50.0 µg/kg bw/day.


Subject(s)
Herbicides/pharmacokinetics , Herbicides/toxicity , Liver/metabolism , Models, Biological , Models, Statistical , Occupational Exposure/analysis , Pyridines/pharmacokinetics , Pyridines/toxicity , Adult , Aged , Animals , Bayes Theorem , Environmental Monitoring , Farmers , Humans , Male , Markov Chains , Mice , Middle Aged , Monte Carlo Method , No-Observed-Adverse-Effect Level , Occupational Exposure/adverse effects , Risk Assessment , Toxicokinetics , Young Adult
3.
Regul Toxicol Pharmacol ; 71(2): 235-43, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25543108

ABSTRACT

A number of biomonitoring surveys have been performed for chlorpyrifos (CPF) and its metabolite (3,5,6-trichloro-2-pyridinol, TCPy); however, there is no available guidance on how to interpret these data in a health risk assessment context. To address this gap, Biomonitoring Guidance Values (BGVs) are developed using a physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model. The PBPK/PD model is used to predict the impact of age and human variability on the relationship between an early marker of cholinesterase (ChE) inhibition in the peripheral and central nervous systems [10% red blood cell (RBC) ChE inhibition] and levels of systemic biomarkers. Since the PBPK/PD model characterizes variation of sensitivity to CPF in humans, interspecies and intraspecies uncertainty factors are not needed. Derived BGVs represent the concentration of blood CPF and urinary TCPy associated with 95% of the population having less than or equal to 10% RBC ChE inhibition. Blood BGV values for CPF in adults and infants are 6100 ng/L and 4200 ng/L, respectively. Urinary TCPy BGVs for adults and infants are 2100 µg/L and 520 µg/L, respectively. The reported biomonitoring data are more than 150-fold lower than the BGVs suggesting that current US population exposures to CPF are well below levels associated with any adverse health effect.


Subject(s)
Chlorpyrifos/metabolism , Cholinesterase Inhibitors/metabolism , Environmental Monitoring/methods , Models, Biological , Adult , Animals , Biomarkers/metabolism , Chlorpyrifos/pharmacokinetics , Cholinesterase Inhibitors/pharmacokinetics , Dose-Response Relationship, Drug , Environmental Monitoring/standards , Humans , Infant , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...