Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 25(23): 6909-6915, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31285372

ABSTRACT

Liquid biopsy offers a versatile, noninvasive opportunity to diagnose, characterize, and monitor disease in patients with cancer. There are particularly promising applications with which to use liquid biopsies to predict and evaluate response to immunotherapy. Circulating tumor DNA (ctDNA) can reflect the genomic state of a patient's overall disease and, thus, might identify prognostic and predictive biomarkers for immune checkpoint inhibitor therapy. ctDNA might also be a proxy for a patient's overall disease burden, which could be used for early diagnosis and monitoring treatment response. These applications can enable novel trial designs, such as enrollment of early-stage patients with a high risk for relapse, and the evaluation of response patterns unique to immunotherapies. However, barriers to the widespread adoption of ctDNA assessment remain, including the absence of standardized procedures for collecting and processing ctDNA samples and relatively limited data on clinical utility. Identifying and solving these challenges could allow ctDNA to become a powerful clinical and research tool in the era of personalized immunotherapy.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Biomarkers, Tumor/analysis , Circulating Tumor DNA/analysis , Immunotherapy/methods , Neoplasms/genetics , Neoplasms/therapy , Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , Genomics , Humans , Neoplasms/diagnosis , Neoplasms/immunology , Treatment Outcome
3.
Nat Commun ; 9(1): 4181, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30327465

ABSTRACT

Racial/ethnic disparities in breast cancer mortality continue to widen but genomic studies rarely interrogate breast cancer in diverse populations. Through genome, exome, and RNA sequencing, we examined the molecular features of breast cancers using 194 patients from Nigeria and 1037 patients from The Cancer Genome Atlas (TCGA). Relative to Black and White cohorts in TCGA, Nigerian HR + /HER2 - tumors are characterized by increased homologous recombination deficiency signature, pervasive TP53 mutations, and greater structural variation-indicating aggressive biology. GATA3 mutations are also more frequent in Nigerians regardless of subtype. Higher proportions of APOBEC-mediated substitutions strongly associate with PIK3CA and CDH1 mutations, which are underrepresented in Nigerians and Blacks. PLK2, KDM6A, and B2M are also identified as previously unreported significantly mutated genes in breast cancer. This dataset provides novel insights into potential molecular mechanisms underlying outcome disparities and lay a foundation for deployment of precision therapeutics in underserved populations.


Subject(s)
Breast Neoplasms/genetics , Homologous Recombination , Mutation , APOBEC Deaminases/genetics , Black or African American/genetics , Antigens, CD/genetics , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cadherins/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Exome , Female , Humans , Nigeria , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Tumor Suppressor Protein p53/genetics , White People/genetics , Whole Genome Sequencing
4.
Source Code Biol Med ; 11: 13, 2016.
Article in English | MEDLINE | ID: mdl-27999612

ABSTRACT

BACKGROUND: Matched sequencing of both tumor and normal tissue is routinely used to classify variants of uncertain significance (VUS) into somatic vs. germline. However, assays used in molecular diagnostics focus on known somatic alterations in cancer genes and often only sequence tumors. Therefore, an algorithm that reliably classifies variants would be helpful for retrospective exploratory analyses. Contamination of tumor samples with normal cells results in differences in expected allelic fractions of germline and somatic variants, which can be exploited to accurately infer genotypes after adjusting for local copy number. However, existing algorithms for determining tumor purity, ploidy and copy number are not designed for unmatched short read sequencing data. RESULTS: We describe a methodology and corresponding open source software for estimating tumor purity, copy number, loss of heterozygosity (LOH), and contamination, and for classification of single nucleotide variants (SNVs) by somatic status and clonality. This R package, PureCN, is optimized for targeted short read sequencing data, integrates well with standard somatic variant detection pipelines, and has support for matched and unmatched tumor samples. Accuracy is demonstrated on simulated data and on real whole exome sequencing data. CONCLUSIONS: Our algorithm provides accurate estimates of tumor purity and ploidy, even if matched normal samples are not available. This in turn allows accurate classification of SNVs. The software is provided as open source (Artistic License 2.0) R/Bioconductor package PureCN (http://bioconductor.org/packages/PureCN/).

5.
Nat Med ; 20(1): 87-92, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24362935

ABSTRACT

Mantle cell lymphoma (MCL) is an aggressive malignancy that is characterized by poor prognosis. Large-scale pharmacological profiling across more than 100 hematological cell line models identified a subset of MCL cell lines that are highly sensitive to the B cell receptor (BCR) signaling inhibitors ibrutinib and sotrastaurin. Sensitive MCL models exhibited chronic activation of the BCR-driven classical nuclear factor-κB (NF-κB) pathway, whereas insensitive cell lines displayed activation of the alternative NF-κB pathway. Transcriptome sequencing revealed genetic lesions in alternative NF-κB pathway signaling components in ibrutinib-insensitive cell lines, and sequencing of 165 samples from patients with MCL identified recurrent mutations in TRAF2 or BIRC3 in 15% of these individuals. Although they are associated with insensitivity to ibrutinib, lesions in the alternative NF-κB pathway conferred dependence on the protein kinase NIK (also called mitogen-activated protein 3 kinase 14 or MAP3K14) both in vitro and in vivo. Thus, NIK is a new therapeutic target for MCL treatment, particularly for lymphomas that are refractory to BCR pathway inhibitors. Our findings reveal a pattern of mutually exclusive activation of the BCR-NF-κB or NIK-NF-κB pathways in MCL and provide critical insights into patient stratification strategies for NF-κB pathway-targeted agents.


Subject(s)
Lymphoma, Mantle-Cell/drug therapy , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/metabolism , Pyrroles/pharmacology , Quinazolines/pharmacology , Receptors, Antigen, B-Cell/metabolism , Signal Transduction/drug effects , Adenine/analogs & derivatives , Baculoviral IAP Repeat-Containing 3 Protein , Base Sequence , Blotting, Western , CARD Signaling Adaptor Proteins/metabolism , Cell Line , Cell Survival , DNA Primers/genetics , Guanylate Cyclase/metabolism , Humans , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , Luminescent Measurements , Microarray Analysis , Molecular Sequence Data , Piperidines , Protein Serine-Threonine Kinases/genetics , Pyrazoles/pharmacology , Pyrimidines/pharmacology , RNA Interference , Real-Time Polymerase Chain Reaction , Receptors, Antigen, B-Cell/antagonists & inhibitors , Sequence Analysis, RNA , TNF Receptor-Associated Factor 2/genetics , TNF Receptor-Associated Factor 2/metabolism , TNF Receptor-Associated Factor 3/metabolism , Trypan Blue , Ubiquitin-Protein Ligases , NF-kappaB-Inducing Kinase
SELECTION OF CITATIONS
SEARCH DETAIL
...