Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Clin Invest ; 129(7): 2745-2759, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31085833

ABSTRACT

Mobilized peripheral blood has become the primary source of hematopoietic stem and progenitor cells (HSPCs) for stem cell transplantation, with a five-day course of granulocyte colony stimulating factor (G-CSF) as the most common regimen used for HSPC mobilization. The CXCR4 inhibitor, plerixafor, is a more rapid mobilizer, yet not potent enough when used as a single agent, thus emphasizing the need for faster acting agents with more predictable mobilization responses and fewer side effects. We sought to improve hematopoietic stem cell transplantation by developing a new mobilization strategy in mice through combined targeting of the chemokine receptor CXCR2 and the very late antigen 4 (VLA4) integrin. Rapid and synergistic mobilization of HSPCs along with an enhanced recruitment of true HSCs was achieved when a CXCR2 agonist was co-administered in conjunction with a VLA4 inhibitor. Mechanistic studies revealed involvement of CXCR2 expressed on BM stroma in addition to stimulation of the receptor on granulocytes in the regulation of HSPC localization and egress. Given the rapid kinetics and potency of HSPC mobilization provided by the VLA4 inhibitor and CXCR2 agonist combination in mice compared to currently approved HSPC mobilization methods, it represents an exciting potential strategy for clinical development in the future.


Subject(s)
Bone Marrow/metabolism , Hematopoietic Stem Cell Mobilization , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Integrin alpha4beta1 , Receptors, Interleukin-8B , Allografts , Animals , Granulocytes/metabolism , Integrin alpha4beta1/antagonists & inhibitors , Integrin alpha4beta1/genetics , Integrin alpha4beta1/metabolism , Mice , Mice, Inbred BALB C , Mice, Knockout , Receptors, Interleukin-8B/antagonists & inhibitors , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/metabolism
2.
Cell ; 172(1-2): 191-204.e10, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29224778

ABSTRACT

Hematopoietic stem cell transplantation is a potential curative therapy for malignant and nonmalignant diseases. Improving the efficiency of stem cell collection and the quality of the cells acquired can broaden the donor pool and improve patient outcomes. We developed a rapid stem cell mobilization regimen utilizing a unique CXCR2 agonist, GROß, and the CXCR4 antagonist AMD3100. A single injection of both agents resulted in stem cell mobilization peaking within 15 min that was equivalent in magnitude to a standard multi-day regimen of granulocyte colony-stimulating factor (G-CSF). Mechanistic studies determined that rapid mobilization results from synergistic signaling on neutrophils, resulting in enhanced MMP-9 release, and unexpectedly revealed genetic polymorphisms in MMP-9 that alter activity. This mobilization regimen results in preferential trafficking of stem cells that demonstrate a higher engraftment efficiency than those mobilized by G-CSF. Our studies suggest a potential new strategy for the rapid collection of an improved hematopoietic graft.


Subject(s)
Hematopoietic Stem Cell Mobilization/methods , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/immunology , Adult , Animals , Benzylamines , Chemokine CXCL2/pharmacology , Cyclams , Female , Hematopoietic Stem Cells/drug effects , Heterocyclic Compounds/pharmacology , Humans , Male , Matrix Metalloproteinase 9/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Inbred ICR , Polymorphism, Genetic
3.
Bioorg Med Chem Lett ; 23(17): 4979-84, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23886683

ABSTRACT

Lead optimization of piperidine amide HTS hits, based on an anilino-thiazole core, led to the identification of analogs which displayed low nanomolar blocking activity at the canonical transient receptor channels 3 and 6 (TRPC3 & 6) based on FLIPR (carbachol stimulated) and electrophysiology (OAG stimulated) assays. In addition, the anilino-thiazole amides displayed good selectivity over other TRP channels (TRPA1, TRPV1, and TRPV4), as well as against cardiac ion channels (CaV1.2, hERG, and NaV1.5). The high oxidation potential of the aliphatic piperidine and aniline groups, as well as the lability of the thiazole amide group contributed to the high clearance observed for this class of compounds. Conversion of an isoquinoline amide to a naphthyridine amide markedly reduced clearance for the bicyclic piperidines, and improved oral bioavailability for this compound series, however TRPC3 and TRPC6 blocking activity was reduced substantially. Although the most potent anilino-thiazole amides ultimately lacked oral exposure in rodents and were not suitable for chronic dosing, analogs such as 14-19, 22, and 23 are potentially valuable in vitro tool compounds for investigating the role of TRPC3 and TRPC6 in cardiovascular disease.


Subject(s)
Aniline Compounds/chemistry , Aniline Compounds/pharmacology , TRPC Cation Channels/antagonists & inhibitors , Thiazoles/chemistry , Thiazoles/pharmacology , Diglycerides/metabolism , Drug Discovery , HEK293 Cells , Humans , TRPC Cation Channels/metabolism , TRPC6 Cation Channel
4.
Bioorg Med Chem Lett ; 20(22): 6744-7, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20926294

ABSTRACT

A series of 3-urea-1-(phenylmethyl)-pyridones was discovered as novel EP(3) antagonists via high-throughput screening and subsequent optimization. The synthesis, structure-activity relationships, and optimization of the initial hit that resulted in potent and selective EP(3) receptor antagonists such as 11g are described.


Subject(s)
Pyridones/pharmacology , Receptors, Prostaglandin E, EP3 Subtype/antagonists & inhibitors , Animals , Humans , Pyridones/chemistry , Rats , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 20(14): 4104-7, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20542694

ABSTRACT

Benzofuran-substituted urea analogs have been identified as novel P2Y(1) receptor antagonists. Structure-activity relationship studies around the urea and the benzofuran moieties resulted in compounds having improved potency. Several analogs were shown to inhibit ADP-mediated platelet activation.


Subject(s)
Benzofurans/chemistry , Purinergic P2Y Receptor Antagonists/chemistry , Receptors, Purinergic P2Y1/metabolism , Urea/chemistry , Benzofurans/pharmacology , Platelet Activation/drug effects , Purinergic P2Y Receptor Antagonists/pharmacology , Urea/pharmacology
6.
Bioorg Med Chem Lett ; 19(6): 1686-90, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19243945

ABSTRACT

Exploration of multiple regions of a bi-aryl amine template led to the identification of highly potent M(3) muscarinic acetylcholine receptor antagonists such as 14 (pA(2)=11.0) possessing good sub-type selectivity for M(3) over M(2). The structure-activity relationships (SAR) and optimization of the bi-aryl amine series are described.


Subject(s)
Amines/chemical synthesis , Chemistry, Pharmaceutical/methods , Receptor, Muscarinic M3/antagonists & inhibitors , Amides/chemistry , Amines/pharmacology , Asthma/drug therapy , Drug Design , Electrons , Humans , Inhibitory Concentration 50 , Kinetics , Models, Chemical , Molecular Structure , Pulmonary Disease, Chronic Obstructive/drug therapy , Receptor, Muscarinic M3/chemistry , Structure-Activity Relationship
8.
J Med Chem ; 51(19): 5915-8, 2008 Oct 09.
Article in English | MEDLINE | ID: mdl-18798607

ABSTRACT

A series of novel biphenyl piperazines was discovered as highly potent muscarinic acetylcholine receptor antagonists via high throughput screening and subsequent optimization. Compound 5c with respective 500- and 20-fold subtype selectivity for M3 over M2 and M1 exhibited excellent inhibitory activity and long duration of action in a bronchoconstriction in vivo model in mice via intranasal administration. The novel inhaled mAChR antagonists are potentially useful therapeutic agents for the treatment of chronic obstructive pulmonary disease.


Subject(s)
Bronchoconstriction/drug effects , Bronchodilator Agents/pharmacology , Piperazines/pharmacology , Receptors, Muscarinic/drug effects , Administration, Intranasal , Animals , Bronchial Provocation Tests , Bronchoconstrictor Agents/pharmacology , Bronchodilator Agents/chemical synthesis , Bronchodilator Agents/chemistry , Disease Models, Animal , Drug Evaluation, Preclinical , Methacholine Chloride/pharmacology , Mice , Molecular Structure , Piperazines/chemical synthesis , Piperazines/chemistry , Stereoisomerism , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 18(20): 5481-6, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18818072

ABSTRACT

SAR exploration of multiple regions of a tyrosine urea template led to the identification of very potent muscarinic acetylcholine receptor antagonists such as 10b with good subtype selectivity for M(3) over M(1). The structure-activity relationships (SAR) and optimization of the tyrosine urea series are described.


Subject(s)
Chemistry, Pharmaceutical/methods , Muscarinic Antagonists/chemical synthesis , Receptors, Muscarinic/chemistry , Tyrosine/chemistry , Urea/chemistry , Asthma/drug therapy , Drug Design , Humans , Inhibitory Concentration 50 , Models, Chemical , Molecular Structure , Muscarinic Antagonists/pharmacology , Salts/chemistry , Structure-Activity Relationship
10.
J Med Chem ; 51(16): 4866-9, 2008 Aug 28.
Article in English | MEDLINE | ID: mdl-18680280

ABSTRACT

High throughput screening and subsequent optimization led to the discovery of novel quaternary ammonium salts as highly potent muscarinic acetylcholine receptor antagonists with excellent selectivity. Compounds 8a, 13a, and 13b showed excellent inhibitory activity and long duration of action in bronchoconstriction in vivo models in two species via intranasal or intratracheal administration. The novel inhaled muscarinic receptor antagonists are potentially useful therapeutic agents for the treatment of chronic obstructive pulmonary disease and other bronchoconstriction disorders.


Subject(s)
Muscarinic Antagonists/pharmacology , Phenylurea Compounds/pharmacology , Quaternary Ammonium Compounds/pharmacology , Tyrosine/analogs & derivatives , Animals , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bronchoconstriction/drug effects , Drug Evaluation, Preclinical/methods , Guinea Pigs , Mice , Rats , Tyrosine/pharmacology
11.
Am J Physiol Renal Physiol ; 295(4): F984-94, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18632791

ABSTRACT

Prostaglandin EP3 receptors in the central nervous system (CNS) may exert an excitatory effect on urinary bladder function via modulation of bladder afferent pathways. We have studied this action, using two EP3 antagonists, (2E)-3-{1-[(2,4-dichlorophenyl)methyl]-5-fluoro-3-methyl-1H-indol-7-yl}-N-[(4,5-dichloro-2-thienyl)sulfonyl]-2-propenamide (DG041) and (2E)-N-{[5-bromo-2-(methyloxy)phenyl] sulfonyl}-3-[2-(2-naphthalenylmethyl)phenyl]-2-propenamide (CM9). DG041 and CM9 were proven to be selective EP3 antagonists with radioligand binding and functional fluorescent imaging plate reader (FLIPR) assays. Their effects on volume-induced rhythmic bladder contraction and the visceromotor reflex (VMR) response to urinary bladder distension (UBD) were evaluated in female rats after intrathecal or intracerebroventricular administration. Both DG041 and CM9 showed a high affinity for EP3 receptors at subnanomolar concentrations without significant selectivity for any splice variants. At the human EP3C receptor, both inhibited calcium influx produced by the nonselective agonist PGE2. After intrathecal or intracerebroventricular administration both CM9 and DG041 dose-dependently reduced the frequency, but not the amplitude, of the bladder rhythmic contraction. With intrathecal administration DG041 and CM9 produced a long-lasting and robust inhibition on the VMR response to UBD, whereas with intracerebroventricular injection both compounds elicited only a transient reduction of the VMR response to bladder distension. These data support the concept that EP3 receptors are involved in bladder micturition at supraspinal and spinal centers and in bladder nociception at the spinal cord. A centrally acting EP3 receptor antagonist may be useful in the control of detrusor overactivity and/or pain associated with bladder disorders.


Subject(s)
Central Nervous System/physiology , Receptors, Prostaglandin E/metabolism , Reflex/physiology , Urinary Bladder/innervation , Urinary Bladder/physiology , Acrylamides/chemistry , Acrylamides/pharmacology , Animals , CHO Cells , Cell Line, Tumor , Central Nervous System/drug effects , Cricetinae , Cricetulus , Dinoprostone/metabolism , Female , Humans , Injections, Intraventricular , Injections, Spinal , Kidney/cytology , Muscle Contraction/drug effects , Muscle Contraction/physiology , Nociceptors/physiology , Osteosarcoma , Rats , Rats, Sprague-Dawley , Receptors, Prostaglandin E/antagonists & inhibitors , Receptors, Prostaglandin E/genetics , Receptors, Prostaglandin E, EP3 Subtype , Reflex/drug effects , Sulfones/chemistry , Sulfones/pharmacology , Transfection , Tritium , Urination/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...