Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
J Invertebr Pathol ; 204: 108117, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679365

ABSTRACT

Insects have a rich diversity of RNA viruses that can either cause acute infections or persist in host populations without visible symptoms. The melon fly, Zeugodacus cucurbitae (Tephritidae) causes substantial economic losses through infestation of diverse cucurbit and other crops. Of Indomalayan origin, it is now established in many tropical regions of the world. The virome diversity of Z. cucurbitae is largely unknown across large parts of its distribution, including the Indian subcontinent. We have analysed three transcriptomes each of one field-collected and one laboratory-reared Z. cucurbitae population from Bangalore (India) and discovered genomes of ten putative RNA viruses: two sigmaviruses, one chimbavirus, one cripavirus, one noda-like virus, one nora virus, one orbivirus, one partiti-like virus, one sobemovirus and one toti-like virus. Analysis of the only available host genome of a Hawaiian Z. cucurbitae population did not detect host genome integration of the detected viruses. While all ten viruses were found in the Bangalore field population only seven were detected in the laboratory population, indicating that these seven may cause persistent covert infections. Using virus-specific RNA-dependent RNA polymerase gene primers, we detected nine of the RNA viruses with an overall low variant diversity in some but not all individual flies from four out of five Indian regions. We then screened 39 transcriptomes of Z. cucurbitae laboratory populations from eastern Asia (Guangdong, Hainan, Taiwan) and the Pacific region (Hawaii), and detected seven of the ten virus genomes. We found additional genomes of a picorna-like virus and a negev-like virus. Hawaii as the only tested population from the fly's invasive range only had one virus. Our study provides evidence of new and high RNA virus diversity in Indian populations within the original range of Z. cucurbitae, as well as the presence of persistent covert infections in laboratory populations. It builds the basis for future research of tephritid-associated RNA viruses, including their host effects, epidemiology and application potential in biological control.


Subject(s)
RNA Viruses , Tephritidae , Animals , RNA Viruses/genetics , Tephritidae/virology , Tephritidae/genetics , India , Genome, Viral , Transcriptome , Virome/genetics
2.
PLoS One ; 19(3): e0300356, 2024.
Article in English | MEDLINE | ID: mdl-38547192

ABSTRACT

This paper examines the construct validity and measurement invariance of the Parasocial Relationships in Social Media (PRISM) survey which was designed to provide researchers with a valid and reliable tool for measuring parasocial relationships developed in a social media context. A confirmatory factor analysis indicated the survey provides an adequate measure of parasocial relationships with online, social media celebrities, replicating the factor structure found by Boyd and colleagues when they developed PRISM and providing evidence of the construct validity of the survey. Additionally, scalar measurement invariance was achieved which supports the survey's ability to compare parasocial relationships across different social media platforms.


Subject(s)
Famous Persons , Social Media , Humans , Surveys and Questionnaires , Social Environment , Factor Analysis, Statistical
3.
Mol Ecol ; 33(3): e17226, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38018898

ABSTRACT

Insect-specific viruses (ISVs) can affect insect health and fitness, but can also interact with other insect-associated microorganisms. Despite this, ISVs are often studied in isolation from each other, in laboratory populations. Consequently, their diversity, prevalence and associations with other viruses in field populations are less known, yet these parameters are important to understanding virus epidemiology. To help address this knowledge gap, we assessed the diversity, prevalence and coinfections of three ISVs (horizontally transmitted cripavirus, biparentally transmitted sigmavirus and maternally transmitted iflavirus) in 29 field populations of Queensland fruit fly, Australia's most significant horticultural pest, in the context of their different transmission modes. We detected new virus variant diversity. In contrast to the very high virus prevalence in laboratory populations, 46.8% of 293 field flies carried one virus and 4.8% had two viruses. Cripavirus and sigmavirus occurred in all regions, while iflavirus was restricted to subtropical and tropical regions. Cripavirus was most prevalent (37.5%), followed by sigmavirus (13.7%) and iflavirus (4.4%). Cripavirus coinfected some flies with either one of the two vertically transmitted viruses. However, sigmavirus did not coinfect individuals with iflavirus. Three different modelling approaches detected negative association patterns between sigmavirus and iflavirus, consistent with the absence of such coinfections in laboratory populations. This may be linked with their maternal transmission and the ineffective paternal transmission of sigmavirus. Furthermore, we found that, unlike sigmavirus and iflavirus, cripavirus load was higher in laboratory than field flies. Laboratory and mass-rearing conditions may increase ISV prevalence and load due to increased transmission opportunities. We conclude that a combination of field and laboratory studies is needed to uncover ISV interactions and further our understanding of ISV epidemiology.


Subject(s)
Coinfection , Insect Viruses , RNA Viruses , Tephritidae , Humans , Animals , Insecta
4.
J Vet Intern Med ; 37(5): 1893-1898, 2023.
Article in English | MEDLINE | ID: mdl-37549306

ABSTRACT

BACKGROUND: Equine protozoal myeloencephalitis (EPM) caused by Sarcocystis neurona remains an antemortem diagnostic challenge in some horses. Recent work suggested the use of real-time PCR (rtPCR) on cerebrospinal fluid (CSF) as a promising diagnostic tool. OBJECTIVE: To evaluate the sensitivity and specificity of S. neurona rtPCR on CSF for EPM diagnosis using horses with EPM and S. neurona-seropositive horses with other neurologic conditions. ANIMALS: Ninety-nine horses with neurologic disease that underwent complete neurologic examination, CSF collection, and, if euthanized, necropsy including the central nervous system (CNS). METHODS: Retrospective case-control study using banked CSF samples. Samples from horses with neurologic abnormalities and necropsy-confirmed EPM diagnosis, presumptive EPM diagnosis using strict criteria (SnSAG2/4/3 ELISA serum:CSF titer ratios <50) and horses diagnosed with other neurologic diseases were used. RESULTS: Fifty-two horses had EPM; 23 were confirmed on necropsy, and 29 were presumptive clinical diagnoses. The other 47 horses all had necropsy-confirmed diagnoses. Four of the 47 horses had normal neurologic findings on necropsy and the remaining 43 horses had neurologic diseases including equine degenerative myeloencephalopathy (EDM), cervical vertebral stenotic myelopathy, trauma, and other miscellaneous conditions. One CSF sample was weakly positive for S. neurona by rtPCR, this sample was obtained from a horse with confirmed EDM. Samples from the other 98 horses were negative for S. neurona by rtPCR. CONCLUSIONS AND CLINICAL IMPORTANCE: Our study contradicts previous conclusions that S. neurona rtPCR is potentially useful for EPM diagnosis, because our results indicate that the assay has a low sensitivity (0%) for EPM.


Subject(s)
Encephalomyelitis , Horse Diseases , Sarcocystis , Sarcocystosis , Horses , Animals , Sarcocystosis/diagnosis , Sarcocystosis/veterinary , Real-Time Polymerase Chain Reaction/veterinary , Retrospective Studies , Case-Control Studies , Sarcocystis/genetics , Encephalomyelitis/diagnosis , Encephalomyelitis/veterinary , Horse Diseases/diagnosis
5.
Microb Ecol ; 86(3): 2120-2132, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37103495

ABSTRACT

Microbiomes play vital roles in insect fitness and health and can be influenced by interactions between insects and their parasites. Many studies investigate the microbiome of free-living insects, whereas microbiomes of endoparasitoids and their interactions with parasitised insects are less explored. Due to their development in the constrained environment within a host, endoparasitoids are expected to have less diverse yet distinct microbiomes. We used high-throughput 16S rRNA gene amplicon sequencing to characterise the bacterial communities of Dipterophagus daci (Strepsiptera) and seven of its tephritid fruit fly host species. Bacterial communities of D. daci were less diverse and contained fewer taxa relative to the bacterial communities of the tephritid hosts. The strepsipteran's microbiome was dominated by Pseudomonadota (formerly Proteobacteria) (> 96%), mainly attributed to the presence of Wolbachia, with few other bacterial community members, indicative of an overall less diverse microbiome in D. daci. In contrast, a dominance of Wolbachia was not found in flies parasitised by early stages of D. daci nor unparasitised flies. Yet, early stages of D. daci parasitisation resulted in structural changes in the bacterial communities of parasitised flies. Furthermore, parasitisation with early stages of D. daci with Wolbachia was associated with a change in the relative abundance of some bacterial taxa relative to parasitisation with early stages of D. daci lacking Wolbachia. Our study is a first comprehensive characterisation of bacterial communities in a Strepsiptera species together with the more diverse bacterial communities of its hosts and reveals effects of concealed stages of parasitisation on host bacterial communities.


Subject(s)
Microbiota , Wolbachia , Wolbachia/genetics , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , High-Throughput Nucleotide Sequencing
6.
J Invertebr Pathol ; 197: 107874, 2023 03.
Article in English | MEDLINE | ID: mdl-36574813

ABSTRACT

Infections of insects with insect-specific RNA viruses are common and can affect host fitness and health. Previously, persistent RNA virus infections were detected in tephritid fruit flies, including the Queensland fruit fly (Bactrocera tryoni), Australia's most significant horticultural pest. Their transmission modes and efficiency are unclear yet may influence virus epidemiology in field and laboratory populations. Using standard RT-PCR and RT-qPCR we detected iflavirus, cripavirus and sigmavirus in five laboratory populations recently established with field-collected B.tryoni. Virus absence in some individuals suggested that virus transmission is incomplete. Random virus segregation in an isofemale experiment resulted in the establishment of isofemale lines with and without iflavirus and cripavirus. In infected lines, viral loads normalised against host gene transcripts were variable, but did not differ between pupae and adults. Iflavirus and cripavirus were transmitted horizontally, with viruses detected (including at low viral loads) in many previously uninfected individuals after four days, and in most after 12 days cohabitation with infected flies. Iflavirus, but not cripavirus, was transmitted vertically, and surface-sterilised embryos contained high loads. Furthermore, high iflavirus loads in individual females resulted in high loads in their offspring. We demonstrated that viruses are highly prevalent in laboratory populations and that it is possible to establish and maintain uninfected fly lines for the assessment of virus transmission and host effects. This is important for pest management strategies such as the sterile insect technique which requires the mass-rearing of flies, as their fitness and performance may be affected by covert virus infections.


Subject(s)
Dicistroviridae , RNA Viruses , Tephritidae , Female , Animals
8.
Heredity (Edinb) ; 128(3): 169-177, 2022 03.
Article in English | MEDLINE | ID: mdl-35115648

ABSTRACT

Maternally inherited bacterial endosymbionts that affect host fitness are common in nature. Some endosymbionts colonise host populations by reproductive manipulations (such as cytoplasmic incompatibility; CI) that increase the reproductive fitness of infected over uninfected females. Theory predicts that CI-inducing endosymbionts in haplodiploid hosts may also influence sex allocation, including in compatible crosses, however, empirical evidence for this is scarce. We examined the role of two common CI-inducing endosymbionts, Cardinium and Wolbachia, in the sex allocation of Pezothrips kellyanus, a haplodiploid thrips species with a split sex ratio. In this species, irrespective of infection status, some mated females are constrained to produce extremely male-biased broods, whereas other females produce extremely female-biased broods. We analysed brood sex ratio of females mated with males of the same infection status at two temperatures. We found that at 20 °C the frequency of constrained sex allocation in coinfected pairs was reduced by 27% when compared to uninfected pairs. However, at 25 °C the constrained sex allocation frequency increased and became similar between coinfected and uninfected pairs, resulting in more male-biased population sex ratios at the higher temperature. This temperature-dependent pattern occurred without changes in endosymbiont densities and compatibility. Our findings indicate that endosymbionts affect sex ratios of haplodiploid hosts beyond the commonly recognised reproductive manipulations by causing female-biased sex allocation in a temperature-dependent fashion. This may contribute to a higher transmission efficiency of CI-inducing endosymbionts and is consistent with previous models that predict that CI by itself is less efficient in driving endosymbiont invasions in haplodiploid hosts.


Subject(s)
Thysanoptera , Wolbachia , Animals , Bacteroidetes , Female , Male , Sex Ratio , Symbiosis/genetics , Temperature , Thysanoptera/genetics , Thysanoptera/microbiology , Wolbachia/genetics
9.
Sci Rep ; 12(1): 477, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013476

ABSTRACT

Insect mitogenome organisation is highly conserved, yet, some insects, especially with parasitic life cycles, have rearranged mitogenomes. Furthermore, intraspecific mitochondrial diversity can be reduced by fitness-affecting bacterial endosymbionts like Wolbachia due to their maternal coinheritance with mitochondria. We have sequenced mitogenomes of the Wolbachia-infected endoparasitoid Dipterophagus daci (Strepsiptera: Halictophagidae) and four of its 22 known tephritid fruit fly host species using total genomic extracts of parasitised flies collected across > 700 km in Australia. This halictophagid mitogenome revealed extensive rearrangements relative to the four fly mitogenomes which exhibited the ancestral insect mitogenome pattern. Compared to the only four available other strepsipteran mitogenomes, the D. daci mitogenome had additional transpositions of one rRNA and two tRNA genes, and a single nucleotide frameshift deletion in nad5 requiring translational frameshifting or, alternatively, resulting in a large protein truncation. Dipterophagus daci displays an almost completely endoparasitic life cycle when compared to Strepsiptera that have maintained the ancestral state of free-living adults. Our results support the hypothesis that the transition to extreme endoparasitism evolved together with increased levels of mitogenome changes. Furthermore, intraspecific mitogenome diversity was substantially smaller in D. daci than the parasitised flies suggesting Wolbachia reduced mitochondrial diversity because of a role in D. daci fitness.


Subject(s)
Genome, Insect , Genome, Mitochondrial , Tephritidae/genetics , Tephritidae/microbiology , Wolbachia/physiology , Animals , Australia , Frameshift Mutation , Gene Rearrangement , Insect Proteins/genetics , Sequence Deletion , Tephritidae/classification , Tephritidae/physiology
10.
BMC Genomics ; 22(1): 616, 2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34388986

ABSTRACT

BACKGROUND: The endosymbiont Wolbachia can manipulate arthropod reproduction and invade host populations by inducing cytoplasmic incompatibility (CI). Some host species are coinfected with multiple Wolbachia strains which may have sequentially invaded host populations by expressing different types of modular CI factor (cif) genes. The tephritid fruit fly Rhagoletis cerasi is a model for CI and Wolbachia population dynamics. It is associated with at least four Wolbachia strains in various combinations, with demonstrated (wCer2, wCer4), predicted (wCer1) or unknown (wCer5) CI phenotypes. RESULTS: We sequenced and assembled the draft genomes of the Wolbachia strains wCer1, wCer4 and wCer5, and compared these with the previously sequenced genome of wCer2 which currently invades R. cerasi populations. We found complete cif gene pairs in all strains: four pairs in wCer2 (three Type I; one Type V), two pairs in wCer1 (both Type I) and wCer4 (one Type I; one Type V), and one pair in wCer5 (Type IV). Wolbachia genome variant analyses across geographically and genetically distant host populations revealed the largest diversity of single nucleotide polymorphisms (SNPs) in wCer5, followed by wCer1 and then wCer2, indicative of their different lengths of host associations. Furthermore, mitogenome analyses of the Wolbachia genome-sequenced individuals in combination with SNP data from six European countries revealed polymorphic mitogenome sites that displayed reduced diversity in individuals infected with wCer2 compared to those without. CONCLUSIONS: Coinfections with Wolbachia are common in arthropods and affect options for Wolbachia-based management strategies of pest and vector species already infected by Wolbachia. Our analyses of Wolbachia genomes of a host naturally coinfected by several strains unravelled signatures of the evolutionary dynamics in both Wolbachia and host mitochondrial genomes as a consequence of repeated invasions. Invasion of already infected populations by new Wolbachia strains requires new sets of functionally different cif genes and thereby may select for a cumulative modularity of cif gene diversity in invading strains. Furthermore, we demonstrated at the mitogenomic scale that repeated CI-driven Wolbachia invasions of hosts result in reduced mitochondrial diversity and hitchhiking effects. Already resident Wolbachia strains may experience similar cytoplasmic hitchhiking effects caused by the invading Wolbachia strain.


Subject(s)
Tephritidae , Wolbachia , Animals , Biological Evolution , Cytoplasm , Humans , Mitochondria , Symbiosis/genetics , Wolbachia/genetics
11.
Environ Microbiol ; 23(9): 5587-5604, 2021 09.
Article in English | MEDLINE | ID: mdl-34390609

ABSTRACT

Wolbachia are widespread endosymbionts that affect arthropod reproduction and fitness. Mostly maternally inherited, Wolbachia are occasionally transferred horizontally. Previously, two Wolbachia strains were reported at low prevalence and titres across seven Australian tephritid species, possibly indicative of frequent horizontal transfer. Here, we performed whole-genome sequencing of field-caught Wolbachia-positive flies. Unexpectedly, we found complete mitogenomes of an endoparasitic strepsipteran, Dipterophagus daci, suggesting that Wolbachia in the flies are linked to concealed parasitization. We performed the first genetic characterization of D. daci and detected D. daci in Wolbachia-positive flies not visibly parasitized, and most but not all Wolbachia-negative flies were D. daci-negative, presumably reflecting polymorphism for the Wolbachia infections in D. daci. We dissected D. daci from stylopized flies and confirmed that Wolbachia infects D. daci, but also found Wolbachia in stylopized fly tissues, likely somatic, horizontally transferred, non-heritable infections. Furthermore, no Wolbachia cif and wmk genes were detected and very low mitogenomic variation in D. daci across its distribution. Therefore, Wolbachia may influence host fitness without reproductive manipulation. Our study of 13 tephritid species highlights that concealed early stages of strepsipteran parasitization led to the previous incorrect assignment of Wolbachia co-infections to tephritid species, obscuring ecological studies of this common endosymbiont and its horizontal transmission by parasitoids.


Subject(s)
Symbiosis , Tephritidae , Wolbachia , Animals , Australia , Tephritidae/microbiology , Wolbachia/genetics
12.
J Invertebr Pathol ; 186: 107569, 2021 11.
Article in English | MEDLINE | ID: mdl-33727045

ABSTRACT

Tephritid fruit flies are amongst the most devastating pests of horticulture, and Sterile Insect Technique (SIT) programs have been developed for their control. Their interactions with viruses are still mostly unexplored, yet, viruses may negatively affect tephritid health and performance in SIT programs, and, conversely, constitute potential biological control agents. Here we analysed ten transcriptome libraries obtained from laboratory populations of nine tephritid species from Australia (six species of Bactrocera, and Zeugodacus cucumis), Asia (Bactrocera dorsalis) and Europe (Ceratitis capitata). We detected new viral diversity, including near-complete (>99%) and partially complete (>80%) genomes of 34 putative viruses belonging to eight RNA virus families. On average, transcriptome libraries included 3.7 viruses, ranging from 0 (Z. cucumis) to 9 (B. dorsalis). Most viruses belonged to the Picornavirales, represented by fourteen Dicistroviridae (DV), nine Iflaviridae (IV) and two picorna-like viruses. Others were a virus from Rhabdoviridae (RV), one from Xinmoviridae (both Mononegavirales), several unclassified Negev- and toti-like viruses, and one from Metaviridae (Ortervirales). Using diagnostic PCR primers for four viruses found in the transcriptome of the Bactrocera tryoni strain bent wings (BtDV1, BtDV2, BtIV1, and BtRV1), we tested nine Australian laboratory populations of five species (B. tryoni, Bactrocera neohumeralis, Bactrocera jarvisi, Bactrocera cacuminata, C. capitata), and one field population each of B. tryoni, B. cacuminata and Dirioxa pornia. Viruses were present in most laboratory and field populations yet their incidence differed for each virus. Prevalence and co-occurrence of viruses in B. tryoni and B. cacuminata were higher in laboratory than field populations. This raises concerns about the potential accumulation of viruses and their potential health effects in laboratory and mass-rearing environments which might affect flies used in research and control programs such as SIT.


Subject(s)
RNA Viruses/isolation & purification , Tephritidae/virology , Animals , Embryo, Nonmammalian/virology , Female , Genome, Viral , Larva/growth & development , Larva/virology , Male , Pupa/growth & development , Pupa/virology , RNA Viruses/genetics , Tephritidae/growth & development , Transcriptome
13.
Microbiol Resour Announc ; 9(40)2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33004455

ABSTRACT

The draft genome sequence of a novel "Candidatus Liberibacter" species detected in an unidentified species of Zanthoxylum (Rutaceae) collected in Bhutan is reported. The total length is 1,408,989 bp with 1,169 coding sequences in 96 contigs, a GC content of 37.3%, and 76 to 77% average nucleotide identity with several other "Ca Liberibacter" species.

14.
BMC Microbiol ; 20(1): 215, 2020 07 20.
Article in English | MEDLINE | ID: mdl-32689950

ABSTRACT

BACKGROUND: Several plant-pathogenic bacteria are transmitted by insect vector species that often also act as hosts. In this interface, these bacteria encounter plant endophytic, insect endosymbiotic and other microbes. Here, we used high throughput sequencing to examine the bacterial communities of five different psyllids associated with citrus and related plants of Rutaceae in Bhutan: Diaphorina citri, Diaphorina communis, Cornopsylla rotundiconis, Cacopsylla heterogena and an unidentified Cacopsylla sp. RESULTS: The microbiomes of the psyllids largely comprised their obligate P-endosymbiont 'Candidatus Carsonella ruddii', and one or two S-endosymbionts that are fixed and specific to each lineage. In addition, all contained Wolbachia strains; the Bhutanese accessions of D. citri were dominated by a Wolbachia strain first found in American isolates of D. citri, while D. communis accessions were dominated by the Wolbachia strain, wDi, first detected in D. citri from China. The S-endosymbionts from the five psyllids grouped with those from other psyllid taxa; all D. citri and D. communis individuals contained sequences matching 'Candidatus Profftella armatura' that has previously only been reported from other Diaphorina species, and the remaining psyllid species contained OTUs related to unclassified Enterobacteriaceae. The plant pathogenic 'Candidatus Liberibacter asiaticus' was found in D. citri but not in D. communis. Furthermore, an unidentified 'Candidatus Liberibacter sp.' occurred at low abundance in both Co. rotundiconis and the unidentified Cacopsylla sp. sampled from Zanthoxylum sp.; the status of this new liberibacter as a plant pathogen and its potential plant hosts are currently unknown. The bacterial communities of Co. rotundiconis also contained a range of OTUs with similarities to bacteria previously found in samples taken from various environmental sources. CONCLUSIONS: The bacterial microbiota detected in these Bhutanese psyllids support the trends that have been seen in previous studies: psyllids have microbiomes largely comprising their obligate P-endosymbiont and one or two S-endosymbionts. In addition, the association with plant pathogens has been demonstrated, with the detection of liberibacters in a known host, D. citri, and identification of a putative new species of liberibacter in Co. rotundiconis and Cacopsylla sp.


Subject(s)
Bacteria/classification , Hemiptera/microbiology , RNA, Ribosomal, 16S/genetics , Rutaceae/parasitology , Sequence Analysis, DNA/methods , Animals , Bacteria/genetics , Bacteria/isolation & purification , Bhutan , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , High-Throughput Nucleotide Sequencing , Phylogeny , Rutaceae/microbiology
15.
Genome Biol Evol ; 12(5): 720-735, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32163151

ABSTRACT

The application of Wolbachia in insect pest and vector control requires the establishment of genotypically stable host associations. The cytoplasmic incompatibility (CI) inducing Wolbachia strain wCer2 naturally occurs in the cherry fruit fly Rhagoletis cerasi as co-infection with other strains and was transferred to other fruit fly species by embryonic microinjections. We obtained wCer2 genome data from its native and three novel hosts, Drosophila simulans, Drosophila melanogaster, and Ceratitis capitata and assessed its genome stability, characteristics, and CI factor (cif) genes. De novo assembly was successful from Wolbachia cell-enriched singly infected D. simulans embryos, with minimal host and other bacterial genome traces. The low yield of Wolbachia sequence reads from total genomic extracts of one multiply infected R. cerasi pupa and one singly infected C. capitata adult limited de novo assemblies but was sufficient for comparative analyses. Across hosts wCer2 was stable in genome synteny and content. Polymorphic nucleotide sites were found in wCer2 of each host; however, only one nucleotide was different between R. cerasi and C. capitata, and none between replicated D. simulans lines. The wCer2 genome is highly similar to wAu (D. simulans), wMel (D. melanogaster), and wRec (Drosophila recens). In contrast to wMel and wRec (each with one cif gene pair) and wAu (without any cif genes), wCer2 has three pairs of Type I cif genes, and one Type V cifB gene without a cifA complement. This may explain previously reported CI patterns of wCer2, including incomplete rescue of its own CI modification in three novel host species.


Subject(s)
Bacterial Proteins/genetics , Cytoplasm/genetics , Drosophila/microbiology , Genomic Instability , Host Specificity , Symbiosis , Wolbachia/genetics , Animals , Evolution, Molecular , Host-Pathogen Interactions , Phenotype , Wolbachia/physiology
16.
BMC Microbiol ; 19(Suppl 1): 281, 2019 12 24.
Article in English | MEDLINE | ID: mdl-31870300

ABSTRACT

BACKGROUND: Mass-rearing, domestication and gamma irradiation of tephritid fruit flies used in sterile insect technique (SIT) programmes can negatively impact fly quality and performance. Symbiotic bacteria supplied as probiotics to mass-reared fruit flies may help to overcome some of these issues. However, the effects of tephritid ontogeny, sex, diet and irradiation on their microbiota are not well known. RESULTS: We have used next-generation sequencing to characterise the bacterial community composition and structure within Queensland fruit fly, Bactrocera tryoni (Froggatt), by generating 16S rRNA gene amplicon libraries derived from the guts of 58 individual teneral and mature, female and male, sterile and fertile adult flies reared on artificial larval diets in a laboratory or mass-rearing environment, and fed either a full adult diet (i.e. sugar and yeast hydrolysate) or a sugar only adult diet. Overall, the amplicon sequence read volume in tenerals was low and smaller than in mature adult flies. Operational taxonomic units (OTUs), belonging to the families Enterobacteriaceae (8 OTUs) and Acetobacteraceae (1 OTU) were most prevalent. Enterobacteriaceae dominated laboratory-reared tenerals from a colony fed a carrot-based larval diet, while Acetobacteraceae dominated mass-reared tenerals from a production facility colony fed a lucerne chaff based larval diet. As adult flies matured, Enterobacteriaceae became dominant irrespective of larval origin. The inclusion of yeast in the adult diet strengthened this shift away from Acetobacteraceae towards Enterobacteriaceae. Interestingly, irradiation increased 16S rRNA gene sequence read volume. CONCLUSIONS: Our findings suggest that bacterial populations in fruit flies experience significant bottlenecks during metamorphosis. Gut bacteria in teneral flies were less abundant and less diverse, and impacted by colony origin. In contrast, mature adult flies had selectively increased abundances for some gut bacteria, or acquired these bacteria from the adult diet and environment. Furthermore, irradiation augmented bacterial abundance in mature flies. This implies that either some gut bacteria were compensating for damage caused by irradiation or irradiated flies had lost their ability to regulate bacterial load. Our findings suggest that the adult stage prior to sexual maturity may be ideal to target for probiotic manipulation of fly microbiota to increase fly performance in SIT programmes.


Subject(s)
Bacteria/classification , Gastrointestinal Microbiome/radiation effects , RNA, Ribosomal, 16S/genetics , Tephritidae/physiology , Animal Feed , Animals , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/radiation effects , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Domestication , Female , High-Throughput Nucleotide Sequencing , Male , Phylogeny , Sequence Analysis, RNA , Tephritidae/microbiology , Tephritidae/radiation effects
17.
J Vet Intern Med ; 33(1): 275-279, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30520521

ABSTRACT

BACKGROUND: Streptococcus equi subspecies equi infection elicits M protein antibody titers in equids. Interpretation of titers is not generally accepted. HYPOTHESIS: The magnitude of S. equi M protein (SeM) antibody titer after infection (titer ≥1:12 800) will be useful to monitor for the presence of complications or the risk of development of complications. ANIMALS: Forty-eight horses on 1 farm involved in strangles outbreak. METHODS: Clinical and observational study. S. equi M protein antibody titers were measured on all horses 8 weeks after infection and select horses 12 and 28 weeks after infection. Horses were categorized: no disease, uncomplicated case, persistent guttural pouch (GP) infection, or complicated cases (metastatic abscesses, purpura hemorrhagica, secondary infections, and dysphagia). Category was compared to titer. RESULTS: Twenty-eight of 48 (58%) developed clinical signs of S. equi infection. Of those, 11 (39%) had uncomplicated strangles, 9 (21%) had persistent GP infection, 5 (18%) were complicated cases, and 3 (11%) had both persistent GP infection and complications. Thirty-three percent of horses (16 of 48) had SeM antibody titers ≥1:12 800 eight weeks after infection. Of horses with titers ≥1:12 800, 6 of 16 had evidence of complications. Of complicated cases, 6 of 8 had titers ≥1:12 800. In this outbreak, the sensitivity (75%; 95% CI [confidence interval] 45-105) for a SeM antibody titer ≥1:12 800 detecting complications was higher than the specificity (43%; 95% CI 23-64). CONCLUSIONS AND CLINICAL IMPORTANCE: This outbreak demonstrates that SeM antibody titers can be increased after infection (≥1:12 800) in the absence of complications of strangles.


Subject(s)
Antibodies, Bacterial/immunology , Horse Diseases/microbiology , Streptococcal Infections/veterinary , Streptococcus equi/immunology , Animals , Antibodies, Bacterial/blood , Female , Horse Diseases/etiology , Horse Diseases/immunology , Horses , Male , Risk Factors , Streptococcal Infections/complications , Streptococcal Infections/immunology
18.
J Vet Intern Med ; 32(3): 1210-1214, 2018 May.
Article in English | MEDLINE | ID: mdl-29633348

ABSTRACT

BACKGROUND: Infection by 2 or more protozoa is linked with increased severity of disease in marine mammals with protozoan encephalitis. HYPOTHESIS/OBJECTIVES: To assess whether horses with equine protozoal myeloencephalitis (EPM) caused by Sarcocystis neurona also have evidence of infection with Neospora hughesi or Toxoplasma gondii. We hypothesized that horses with EPM would be more likely than horses with cervical vertebral stenotic myelopathy (CVSM) to be positive for antibodies to multiple protozoan parasites. ANIMALS: One hundred one horses with neurologic disease: 49 with EPM and 52 with CVSM. METHODS: Case review. Archived serum and cerebrospinal fluid (CSF) from 101 horses were examined. Inclusion criteria included neurologic disease, antemortem or postmortem diagnosis of EPM or CVSM, and availability of serological results or archived samples for testing. Additional testing for antibodies was performed on serum for T. gondii, as well as serum and CSF for N. hughesi. RESULTS: Horses with EPM were more likely than horses with CVSM to have positive immunologic results for S. neurona on serum (95.9% versus 76.9%, P = .0058), CSF (98.0% versus 44.2%, P < .00001), and serum : CSF titer ratio (91.8% versus 0%, P < .00001). Positive results for Neospora and Toxoplasma were uncommon, with total seroprevalence rates of 12.9% and 14.9%, respectively. The proportions of EPM cases testing positive for Neospora and Toxoplasma (16% and 12%) were not different from the proportions of CVSM cases testing positive (10% and 17%, P = .31 and .47, respectively). CONCLUSION: Results do not indicate an important role for protozoal coinfection in EPM in the eastern United States.


Subject(s)
Coinfection/veterinary , Encephalomyelitis/veterinary , Horse Diseases/parasitology , Animals , Antibodies, Protozoan/blood , Coccidiosis/complications , Coccidiosis/parasitology , Coccidiosis/veterinary , Coinfection/parasitology , Encephalomyelitis/parasitology , Horses , Neospora , Pennsylvania , Sarcocystis , Sarcocystosis/complications , Sarcocystosis/parasitology , Sarcocystosis/veterinary , Toxoplasma , Toxoplasmosis, Animal/complications , Toxoplasmosis, Animal/parasitology , Toxoplasmosis, Animal/pathology
19.
Vet Parasitol ; 247: 37-41, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-29080762

ABSTRACT

Equine protozoal myeloencephalitis (EPM) is an important equine neurologic disorder, and treatments for the disease are often unrewarding. Prevention of the disease is the most important aspect for EPM, and a killed vaccine was previously developed for just that purpose. Evaluation of the vaccine had been hampered by lack of post vaccination challenge. The purpose of this study was to determine if the vaccine could prevent development of clinical signs after challenge with Sarcocystis neurona sporocysts in an equine challenge model. Seventy horses that were negative for antibodies to S. neurona and were neurologically normal were randomly assigned to vaccine or placebo groups and divided into short-term duration of immunity (study #1) and long-term duration of immunity (study #2) studies. S. neurona sporocysts used for the challenge were generated in the opossum/raccoon cycle isolate SN 37-R. Study #1 horses received an initial vaccination and a booster, and were challenged 34days post second vaccination. Study #2 horses received a vaccination and two boosters and were challenged 139days post third vaccination. All horses in study #1 developed neurologic signs (n=30) and there was no difference between the vaccinates and controls (P=0.7683). All but four horses in study #2 developed detectable neurologic deficits. The neurologic signs, although not statistically significant, were worse in the vaccinated horses (P=0.1559). In these two studies, vaccination with the S. neurona vaccine failed to prevent development of clinical neurologic deficits.


Subject(s)
Encephalomyelitis/veterinary , Horse Diseases/prevention & control , Protozoan Vaccines/immunology , Sarcocystis/immunology , Sarcocystosis/veterinary , Vaccination/veterinary , Animals , Encephalomyelitis/parasitology , Encephalomyelitis/prevention & control , Horse Diseases/parasitology , Horses , Opossums , Raccoons , Random Allocation , Sarcocystosis/parasitology , Sarcocystosis/prevention & control
20.
Res Vet Sci ; 114: 401-405, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28750210

ABSTRACT

The current study aimed at the investigating the potential use of phosphorylated neurofilament H (pNF-H) as a diagnostic biomarker for neurologic disorders in the horse. Paired serum and cerebrospinal fluid (CSF) samples (n=88) and serum only (n=30) were obtained from horses diagnosed with neurologic disorders and clinically healthy horses as control. The neurologic horses consisted of equine protozoal myeloencephalitis (EPM) (38 cases) and cervical vertebral malformation (CVM) (23 cases). Levels of pNF-H were determined using an ELISA. The correlation between CSF and serum concentrations of pNF-H was evaluated using Spearman's Rank test and the significance of the difference among the groups was assessed using a nonparametric test. Horses had higher pNF-H levels in the CSF than serum. Horses afflicted with EPM had significantly higher serum pNF-H levels in comparison to controls or CVM cases. The correlation between CSF and serum pNF-H levels was poor in both the whole study population and among subgroups of horses included in the study. There was significant association between the likelihood of EPM and the concentrations of pNF-H in either the serum or CSF. These data suggest that pNF-H could be detected in serum and CSF samples from neurologic and control horses. This study demonstrated that pNF-H levels in serum and CSF have the potential to provide objective information to help in the early diagnosis of horses afflicted with neurologic disorders.


Subject(s)
Cervical Vertebrae/abnormalities , Horse Diseases/diagnosis , Nervous System Diseases/veterinary , Neurofilament Proteins/blood , Neurofilament Proteins/chemical synthesis , Animals , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Cross-Sectional Studies , Encephalomyelitis/blood , Encephalomyelitis/cerebrospinal fluid , Encephalomyelitis/diagnosis , Encephalomyelitis/veterinary , Enzyme-Linked Immunosorbent Assay/veterinary , Horse Diseases/blood , Horse Diseases/cerebrospinal fluid , Horses , Nervous System Diseases/blood , Nervous System Diseases/cerebrospinal fluid , Nervous System Diseases/diagnosis , Phosphorylation , Sarcocystis/isolation & purification , Sarcocystosis/blood , Sarcocystosis/cerebrospinal fluid , Sarcocystosis/diagnosis , Sarcocystosis/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...