Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Eng ; 58(5)2019.
Article in English | MEDLINE | ID: mdl-34531618

ABSTRACT

We describe the design and ground-based performance of the two-color calibration lamp for the Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI) instrument on the NASA Ionospheric Connection (ICON) satellite. The calibration lamp assembly contains radio frequency excited krypton and neon lamps, which generate emission lines at 557 and 630 nm, respectively, and which are used to monitor thermal drifts in the two MIGHTI Doppler asymmetric spatial heterodyne interferometers. The lamps are coupled to two mixed optical fiber bundles that deliver the calibration signals to the two MIGHTI optical units. The assembly starts reliably, consumes <8 W, and has passed environmental testing for the ICON satellite. The total mass of the lamp assembly is 1.8 kg. Special features of the assembly and its implementation are described along with results of life tests.

2.
Space Sci Rev ; 212(1-2): 553-584, 2017 Oct.
Article in English | MEDLINE | ID: mdl-30008488

ABSTRACT

The Michelson Interferometer for Global High-resolution imaging of the Thermosphere and Ionosphere (MIGHTI) instrument was built for launch and operation on the NASA Ionospheric Connection Explorer (ICON) mission. The instrument was designed to measure thermospheric horizontal wind velocity profiles and thermospheric temperature in altitude regions between 90km and 300km, during day and night. For the wind measurements it uses two perpendicular fields of view pointed at the Earth's limb, observing the Doppler shift of the atomic oxygen red and green lines at 630.0nm and 557.7nm wavelength. The wavelength shift is measured using field-widened, temperature compensated Doppler Asymmetric Spatial Heterodyne (DASH) spectrometers, employing low order échelle gratings operating at two different orders for the different atmospheric lines. The temperature measurement is accomplished by a multichannel photometric measurement of the spectral shape of the molecular oxygen A-band around 762nm wavelength. For each field of view, the signals of the two oxygen lines and the A-band are detected on different regions of a single, cooled, frame transfer charge coupled device (CCD) detector. On-board calibration sources are used to periodically quantify thermal drifts, simultaneously with observing the atmosphere. The MIGHTI requirements, the resulting instrument design and the calibration are described.

3.
Environ Sci Technol ; 43(24): 9294-9, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-19924898

ABSTRACT

This paper reports the development of an in situ continuous emission monitor (CEM) for measuring elemental mercury (Hg(0)) concentration in the exhaust stream of coal-fired power plants. The instrument is based on the ultraviolet atomic absorption of a mercury lamp emission line by elemental mercury and a light-emitting diode (LED) background correction system. This approach allows an in situ measurement since the absorption of other species such as SO(2) can be removed to monitor the Hg(0) contribution only. Proof of concept was established through a laboratory-based investigation, and a limit of detection, [Hg(0)](min), of 2 microg/m(3) was measured for a 1-min averaged sample and an absorption path length of 49 cm. [Hg(0)](min) is anticipated to be better than 0.2 microg/m(3) across a 7 m diameter stack. Finally, the apparatus was field-tested in a 230 MW coal-fired power plant. The operability of the measurement in real conditions was demonstrated, leading to the first Hg(0) concentration values recorded by the in situ CEM. Comparison with an accepted standard method is required for validation.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/instrumentation , Mercury/analysis , Absorption , Coal , Environmental Monitoring/methods , Limit of Detection , Power Plants , Sulfates/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...