Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(21)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37958894

ABSTRACT

To overcome the problem of antitumor agent toxicity for normal cells, a combined therapy using drugs with synergistic effects seems to be more effective. We investigated the molecular mechanisms of the sensitization of tumor cells resistant and sensitive to histone deacetylase inhibitors (HDACis) upon etoposide treatment together with the HDACi sodium butyrate (NaBut). We showed that NaBut enhances the cytotoxic effect of etoposide in both HDACi-sensitive and HDACi-resistant cells due to the accumulation of the Bax protein and the dissociation of Ku70-Bax inhibitory complexes. In HDACi-resistant cells, NaBut causes the cytoplasmic accumulation of Bax dissociated from mitochondria in complexes with Ku70 proteins. The increased phosphorylation of the pro-apoptotic Bad protein due to the NaBut-induced activation of Erk and Akt kinases is one of the possible reasons for the accumulation of Bax in the cytoplasm. Despite the inactivation of Bax in HDACi-resistant cells, its accumulation in the cytoplasm upon NaBut treatment makes it possible to enhance the apoptotic response against agents activating the intrinsic pathway of apoptosis. Thus, HDACis involved in combined therapy mediate the sensitization of tumor cells to genotoxic drugs, regardless of the cells' resistance to HDACis.


Subject(s)
Antineoplastic Agents , Butyric Acid/pharmacology , bcl-2-Associated X Protein , Etoposide/pharmacology , Antineoplastic Agents/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Apoptosis , Cell Line, Tumor
2.
J Exp Clin Cancer Res ; 42(1): 279, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37880798

ABSTRACT

BACKGROUND: Cancer recurrence is regulated by a variety of factors, among which is the material of dying tumor cells; it is suggested that remaining after anti-cancer therapy tumor cells receive a signal from proteins called damage-associated molecular patterns (DAMPs), one of which is heat shock protein 70 (Hsp70). METHODS: Two models of tumor repopulation were employed, based on minimal population of cancer cells and application of conditioned medium (CM). To deplete the CMs of Hsp70 affinity chromatography on ATP-agarose and immunoprecipitation were used. Cell proliferation and the dynamics of cell growth were measured using MTT assay and xCELLigence technology; cell growth markers were estimated using qPCR and with the aid of ELISA for prostaglandin E detection. Immunoprecipitation followed by mass-spectrometry was employed to identify Hsp70-binding proteins and protein-protein interaction assays were developed to reveal the above protein complexes. RESULTS: It was found that CM of dying tumor cells contains tumor regrowth-initiating factors and the removal of one of them, Hsp70, caused a reduction in the relapse-activating capacity. The pull out of Hsp70 alone using ATP-agarose had no effect on repopulation, while the immunodepletion of Hsp70 dramatically reduced its repopulation activity. Using proteomic and immunochemical approaches, we showed that Hsp70 in conditioned medium binds and binds another abundant alarmin, the High Mobility Group B1 (HMGB1) protein; the complex is formed in tumor cells treated with anti-cancer drugs, persists in the cytosol and is further released from dying tumor cells. Recurrence-activating power of Hsp70-HMGB1 complex was proved by the enhanced expression of proliferation markers, Ki67, Aurka and MCM-10 as well as by increase of prostaglandin E production and autophagy activation. Accordingly, dissociating the complex with Hsp70 chaperone inhibitors significantly inhibited the pro-growth effects of the above complex, in both in vitro and in vivo tumor relapse models. CONCLUSIONS: These data led us to suggest that the abundance of the Hsp70-HMGB1 complex in the extracellular matrix may serve as a novel marker of relapse state in cancer patients, while specific targeting of the complex may be promising in the treatment of cancers with a high risk of recurrence.


Subject(s)
HMGB1 Protein , HSP70 Heat-Shock Proteins , Humans , Alarmins , HMGB1 Protein/metabolism , Culture Media, Conditioned , Proteomics , Chronic Disease , Recurrence , Prostaglandins
3.
Int J Mol Sci ; 23(7)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35408878

ABSTRACT

Many cancer therapy strategies cause DNA damage leading to the death of tumor cells. The DNA damage response (DDR) modulators are considered as promising candidates for use in combination therapy to enhance the efficacy of DNA-damage-mediated cancer treatment. The inhibitors of histone deacetylases (HDACis) exhibit selective antiproliferative effects against transformed and tumor cells and could enhance tumor cell sensitivity to genotoxic agents, which is partly attributed to their ability to interfere with DDR. Using the comet assay and host-cell reactivation of transcription, as well as γH2AX staining, we have shown that sodium butyrate inhibited DNA double-strand break (DSB) repair of both endo- and exogenous DNA in transformed but not in normal cells. According to our data, the dysregulation of the key repair proteins, especially the phosphorylated Mre11 pool decrease, is the cause of DNA repair impairment in transformed cells. The inability of HDACis to obstruct DSB repair in normal cells shown in this work demonstrates the advantages of HDACis in combination therapy with genotoxic agents to selectively enhance their cytotoxic activity in cancer cells.


Subject(s)
DNA Repair , Histone Deacetylase Inhibitors , Butyric Acid/metabolism , Butyric Acid/pharmacology , DNA Breaks, Double-Stranded , DNA Damage , Fibroblasts/metabolism , Histone Deacetylase Inhibitors/metabolism , Histone Deacetylase Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...