Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biometals ; 36(6): 1391-1404, 2023 12.
Article in English | MEDLINE | ID: mdl-37556014

ABSTRACT

Alzheimer's disease (AD) is one of the primary health problems linked to the decrease of acetylcholine in cholinergic neurons and elevation in oxidative stress. Myco-fabrication of ZnO-NPs revealed excellent biological activities, including anti-inflammatory and acetylcholinesterase inhibitory potentials. This study aims to determine if two distinct doses of myco-fabricated ZnO-NPs have a positive impact on behavioral impairment and several biochemical markers associated with inflammation and oxidative stress in mice that have been treated by aluminum chloride (AlCl3) to induce AD. Sixty male mice were haphazardly separated into equally six groups. Group 1 was injected i.p. with 0.5 ml of deionized water daily during the experiment. Mice in group 2 received AlCl3 (50 mg/kg/day i.p.). Groups 3 and 4 were treated i.p. with 5 and 10 mg/kg/day of ZnO-NPs only, respectively. Groups 5 and 6 were given i.p. 5 and 10 mg/kg/day ZnO-NPs, respectively, add to 50 mg/kg/day AlCl3. Results showed that the AlCl3 caused an increase in the escape latency time and a reduction in the time spent in the target quadrant, indicating a decreased improvement in learning and memory. Moreover, acetylcholinesterase enzyme (AChE) activity and malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α), and interleukin 1ß (IL-1ß) levels were significantly increased, and the content of glutathione (GSH), activities of superoxide dismutase (SOD), catalase (CAT), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), as well as levels of serotonin and dopamine, were decreased in brain tissues only in AlCl3 treated mice. However, treatment of mice with myco-fabrication of ZnO-NPs at doses of 5 or 10 mg/kg improves learning and memory function through ameliorate all the previous parameters in the AD mice group. The low dose of 5 mg/kg is more effective than a high dose of 10 mg/kg. In accordance with these findings, myco-fabricated ZnO-NPs could enhance memory and exhibit a protective influence against memory loss caused by AlCl3.


Subject(s)
Alzheimer Disease , Zinc Oxide , Male , Mice , Animals , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Acetylcholinesterase/metabolism , Zinc Oxide/pharmacology , Aluminum Compounds/pharmacology , Chlorides/pharmacology , Oxidative Stress , Glutathione/metabolism
2.
Sci Rep ; 13(1): 1629, 2023 01 30.
Article in English | MEDLINE | ID: mdl-36717680

ABSTRACT

In the current scenario, scaling up the microbial production of nanoparticles with diverse biological applications is an emerging prospect for NPs' sustainable industry. Thus, this paper was conducted to develop a suitable applicative process for the myco-fabrication of cobalt-ferrite (CoFeNPs), selenium (SeNPs), and zinc oxide (ZnONPs) nanoparticles. A strain improvement program using gamma irradiation mutagenesis was applied to improve the NPs-producing ability of the fungal strains. The achieved yields of CoFeNPs, SeNPs, and ZnONPs were intensified by a 14.47, 7.85, and 22.25-fold increase from the initial yield following gamma irradiation and isolation of stable mutant strains. The myco-fabricated CoFeNPs, SeNPs, and ZnONPs were then exploited to study their wound healing, and anti-inflammatory. In addition, the acetylcholinesterase inhibition activities of the myco-fabricated NPs were evaluated and analyzed by molecular docking. The obtained results confirmed the promising wound healing, anti-inflammatory, and acetylcholinesterase inhibition potentials of the three types of NPs. Additionally, data from analyzing the interaction of NPs with acetylcholinesterase enzyme by molecular docking were in conformation with the experimental data.


Subject(s)
Metal Nanoparticles , Nanoparticles , Zinc Oxide , Acetylcholinesterase/genetics , Molecular Docking Simulation , Wound Healing , Anti-Inflammatory Agents/pharmacology , Anti-Bacterial Agents/pharmacology
3.
Braz J Biol ; 84: e258234, 2022.
Article in English | MEDLINE | ID: mdl-35830129

ABSTRACT

The present work was showed to assess the effect of administration of rosemary extract on etoposide-induced toxicity, injury and proliferation in male rats were investigated. Forty male albino rats were arranged into four equal groups. 1st group, control; 2nd group, etoposide; 3rd group, co-treated rosemary & etoposide; 4th group, rosemary alone. In comparison to the control group, etoposide administration resulted in a significant increase in serum ALT, AST, ALP, total bilirubin, total protein, and gamma GT. In contrast; a significant decrease in albumin level in etoposide group as compared to G1. G3 revealed a significant decrease in AST, ALT, ALP, total protein and total bilirubin levels and a significant rise in albumin level when compared with G2. Serum levels of urea, creatinine, potassium ions, and chloride ions significantly increased; while sodium ions were significantly decreased in G2 when compared with G1. Also, there was an increase of MDA level for etoposide treated group with corresponding control rats. However, there was a remarkable significant decrease in SOD, GPX and CAT levels in G2 as compared to G1. There was a significant increase in serum hydrogen peroxide (H2O2) and Nitric oxide (NO) levels in group treated with etoposide when compared to control group. It was noticeable that administrated by rosemary alone either with etoposide had not any effect on the levels of H2O2 and Nitric oxide. Serum level of T3 and T4 was significantly increased in etoposide-administered rats in comparison with G1. The administration of rosemary, either alone or with etoposide, increased the serum levels of T3 and T4 significantly when compared to control rats. The gene expression analysis showed significant downregulation of hepatic SOD and GPx in (G2) when compared with (G1). The treatment with rosemary extract produced significant upregulation of the antioxidant enzymes mRNA SOD and GPx. MDA gene was increased in (G2) when contrasted with (G1). Treatment of the etoposide- induced rats with rosemary extract delivered significant decrease in MDA gene expression when compared with etoposide group. Rats treated with etoposide showed significant decline in hepatic Nrf2 protein expression, when compared with G1. While, supplementation of Etoposide- administered rats with the rosemary produced a significant elevation in hepatic Nrf2 protein levels. Additionally, the liver histological structure displayed noticeable degeneration and cellular infiltration in liver cells. It is possible to infer that rosemary has a potential role and that it should be researched as a natural component for etoposide-induced toxicity protection.


Subject(s)
Rosmarinus , Albumins/metabolism , Albumins/pharmacology , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Bilirubin/metabolism , Bilirubin/pharmacology , Etoposide/metabolism , Etoposide/toxicity , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/pharmacology , Nitric Oxide/metabolism , Nitric Oxide/pharmacology , Oxidative Stress , Plant Extracts/pharmacology , Rats , Rosmarinus/chemistry , Rosmarinus/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase/pharmacology
4.
Article in English | MEDLINE | ID: mdl-20696612

ABSTRACT

UV-visible spectroscopic measurements of Ni-doped sodium phosphate glasses were carried out before and after successive gamma irradiation. The undoped glass reveals strong UV absorption originating from trace iron impurities. NiO-doped glasses show characteristic absorption bands due mainly to octahedral coordination of Ni(2+) ions. Gamma irradiation produces induced bands generated from intrinsic defects and extrinsic defects. The changes in the spectroscopic data are discussed in relation to the structural evolution caused by the changes in composition and coordination state of nickel ions. The change in the growth behaviour of the induced bands is related to the annihilation or approach saturation of these characteristic induced bands. Raman and E.S.R. spectroscopic measurements confirm the presence of nickel as Ni(2+) ions in octahedral state.


Subject(s)
Gamma Rays , Glass/chemistry , Nickel/chemistry , Spectrum Analysis/methods , Electron Spin Resonance Spectroscopy , Molecular Structure , Phosphates , Spectrophotometry, Ultraviolet , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...