Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 11(4)2019 Mar 29.
Article in English | MEDLINE | ID: mdl-30934857

ABSTRACT

Non-viral, polymeric-based, siRNA nanoparticles (NPs) have been proposed as promising gene delivery systems. Encapsulating siRNA in targeted NPs could confer improved biological stability, extended half-life, enhanced permeability, effective tumor accumulation, and therapy. In this work, a peptide derived from apolipoprotein B100 (ApoB-P), the protein moiety of low-density lipoprotein, was used to target siRNA-loaded PEGylated NPs to the extracellular matrix/proteoglycans (ECM/PGs) of a mammary carcinoma tumor. siRNA against osteopontin (siOPN), a protein involved in breast cancer development and progression, was encapsulated into PEGylated poly(d,l-lactic-co-glycolic acid) (PLGA) NPs using the double emulsion solvent diffusion technique. The NPs obtained possessed desired physicochemical properties including ~200 nm size, a neutral surface charge, and high siOPN loading of ~5 µg/mg. ApoB-P-targeted NPs exhibited both enhanced binding to isolated ECM and internalization by MDA-MB-231 human mammary carcinoma cells, in comparison to non-targeted NPs. Increased accumulation of the targeted NPs was achieved in the primary mammary tumor of mice xenografted with MDA-MB-231 mammary carcinoma cells as well as in the lungs, one of the main sites affected by metastases. siOPN NPs treatment resulted in significant inhibition of tumor growth (similar bioactivity of both formulations), accompanied with significant reduction of OPN mRNA levels (~40% knockdown of mRNA levels). We demonstrated that targeted NPs possessed enhanced tumor accumulation with increased therapeutic potential in mice models of mammary carcinoma.

2.
Biofabrication ; 11(3): 032001, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30743247

ABSTRACT

Design and fabrication of effective biomimetic vasculatures constitutes a relevant and yet unsolved challenge, lying at the heart of tissue repair and regeneration strategies. Even if cell growth is achieved in 3D tissue scaffolds or advanced implants, tissue viability inevitably requires vascularization, as diffusion can only transport nutrients and eliminate debris within a few hundred microns. This engineered vasculature may need to mimic the intricate branching geometry of native microvasculature, referred to herein as vascular complexity, to efficiently deliver blood and recreate critical interactions between the vascular and perivascular cells as well as parenchymal tissues. This review first describes the importance of vascular complexity in labs- and organs-on-chips, the biomechanical and biochemical signals needed to create and maintain a complex vasculature, and the limitations of current 2D, 2.5D, and 3D culture systems in recreating vascular complexity. We then critically review available strategies for design and biofabrication of complex vasculatures in cell culture platforms, labs- and organs-on-chips, and tissue engineering scaffolds, highlighting their advantages and disadvantages. Finally, challenges and future directions are outlined with the hope of inspiring researchers to create the reliable, efficient and sustainable tools needed for design and biofabrication of complex vasculatures.


Subject(s)
Microvessels/physiology , Tissue Engineering/methods , Animals , Biomechanical Phenomena , Humans , Printing, Three-Dimensional
3.
Microsc Microanal ; 23(1): 22-33, 2017 02.
Article in English | MEDLINE | ID: mdl-28228171

ABSTRACT

Quantitative analysis of multicellular organization, cell-cell junction integrity, and substrate properties is essential to understand the mechanisms underlying collective cell migration. However, spatially and temporally defining these properties is difficult within collectively migrating cell groups due to challenges in accurate cell segmentation within the monolayer. In this paper, we present Matlab®-based algorithms to spatially quantify multicellular organization (migration distance, interface roughness, and cell alignment, area, and morphology), cell-cell junction integrity, and substrate features in confocal microscopy images of two-dimensional collectively migrating endothelial monolayers. We used novel techniques, including measuring the migrating front roughness using a parametric curve formulation, automatically binning cells to obtain data as a function of distance from the migrating front, using iterative morphological closings to fully define cell boundaries, quantifying ß-catenin localization as a measure of cell-cell junction integrity, and skeletonizing fibronectin to determine fiber length and orientation. These algorithms are widely accessible, as they use common fluorescent markers and Matlab® functions, and provide high-throughput critical feature quantification within collectively migrating cell groups. These image analysis algorithms can help standardize feature quantification among different experimental techniques, cell types, and research groups studying collective cell migration.


Subject(s)
Algorithms , Cell Movement , Intercellular Junctions , Cell Separation , Cells, Cultured , Endothelial Cells/cytology , Endothelial Cells/physiology , Extracellular Matrix , Fibronectins/analysis , Humans , Immunohistochemistry , Microscopy, Confocal , Microscopy, Fluorescence , Models, Biological , beta Catenin/analysis
4.
Lab Chip ; 16(3): 561-73, 2016 Feb 07.
Article in English | MEDLINE | ID: mdl-26738543

ABSTRACT

Dielectrophoresis (DEP), the force induced on a polarizable body by a non-uniform electric field, has been widely used to manipulate single cells in suspension and analyze their stiffness. However, most cell types do not naturally exist in suspension but instead require attachment to the tissue extracellular matrix in vivo. Cells alter their cytoskeletal structure when they attach to a substrate, which impacts cell stiffness. It is therefore critical to be able to measure mechanical properties of cells attached to a substrate. We present a novel inverted quadrupole dielectrophoretic device capable of measuring changes in the mechanics of single cells attached to a micropatterned polyacrylamide gel. The device is positioned over a cell of defined size, a directed DEP pushing force is applied, and cell centroid displacement is dynamically measured by optical microscopy. Using this device, single endothelial cells showed greater centroid displacement in response to applied DEP pushing force following actin cytoskeleton disruption by cytochalasin D. In addition, transformed mammary epithelial cell (MCF10A-NeuT) showed greater centroid displacement in response to applied DEP pushing force compared to untransformed cells (MCF10A). DEP device measurements were confirmed by showing that the cells with greater centroid displacement also had a lower elastic modulus by atomic force microscopy. The current study demonstrates that an inverted DEP device can determine changes in single attached cell mechanics on varied substrates.


Subject(s)
Electrophoresis , Endothelial Cells/metabolism , Animals , Cell Adhesion , Cells, Cultured , Electrophoresis/instrumentation , Electrophoresis/methods , Endothelial Cells/ultrastructure , Microscopy, Atomic Force/methods , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...