Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(14): 9281-9303, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36950709

ABSTRACT

Recently, scientists developed a powerful strategy called "one drug-multiple targets" to discover vital and unique therapies to fight the most challenging diseases. Novel derivatives of isatin-based Schiff bases 2-7 have been synthesized by the reaction of 3-hydrazino-isatin (1) with aryl aldehydes, hetero-aryl aldehydes, and dialdehydes. The structure of the synthesized derivatives was proved by physical and spectral analysis. Additionally, in vitro biological studies were performed, including antioxidant, anti-diabetic, anti-Alzheimer, and anti-arthritic activities. The four derivatives 3b, 5a, 5b, and 5c possess the highest activities. Among the four potent derivatives, compound 5a exhibited the highest antioxidant (TAC = 68.02 ± 0.15 mg gallic acid per g; IRP = 50.39 ± 0.11) and scavenging activities (ABTS = 53.98 ± 0.12% and DPPH = 8.65 ± 0.02 µg mL-1). Furthermore, compound 5a exhibited an α-amylase inhibitory percentage of 57.64 ± 0.13% near the acarbose (ACA = 69.11 ± 0.15%) and displayed inhibitor activity of the acetylcholinesterase (AChE) enzyme = 36.38 ± 0.08%. Moreover, our work extended to determining the anti-arthritic effect, and compound 5a revealed good inhibitor activities with very close values for proteinase denaturation (PDI) = 39.59 ± 0.09% and proteinase inhibition (PI) = 36.39 ± 0.08%, compared to diclofenac sodium PDI = 49.33 ± 0.11% and PI = 41.88 ± 0.09%. Additionally, the quantum chemical calculations, including HOMO, LUMO, and energy band gap were determined, and in silico ADMET properties were predicted, and their probability was recorded. Finally, molecular docking simulations were performed inside α-amylase and acetylcholinesterase enzymes.

2.
Drug Dev Res ; 84(1): 3-24, 2023 02.
Article in English | MEDLINE | ID: mdl-36380556

ABSTRACT

The strategy of utilizing nitrogen compounds in various biological applications has recently emerged as a powerful approach to exploring novel classes of therapeutics to face the challenge of diseases. A series of pyrazolo[1,5-a]pyrimidine-based compounds 3a-l and 5a-f were prepared by the direct cyclo-condensation reaction of 5-amino-1H-pyrazoles 1a, b with 2-(arylidene)malononitriles and 3-(dimethylamino)-1-aryl-prop-2-en-1-ones, respectively. The structures of the new pyrazolo[1,5-a]pyrimidine compounds were confirmed via spectroscopic techniques. The in vitro biological activities of all pyrazolo[1,5-a]pyrimidines 3a-l and 5a-f were evaluated by assaying total antioxidant capacity, iron-reducing power, the scavenging activity against 1-diphenyl-2-picryl-hydrazyl (DPPH) and 2, 2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, anti-diabetic, anti-Alzheimer, and anti-arthritic biological activities. All compounds displayed good to potent bioactivity, and three compounds 3g, 3h, and 3l displayed the most active derivatives. Among these derivatives, compound 3l exhibited the highest antioxidant (total antioxidant capacity [TAC] = 83.09 mg gallic acid/g; iron-reducing power [IRP] = 47.93 µg/ml) and free radicals scavenging activities with (DPPH = 18.77 µg/ml; ABTS = 40.44%) compared with ascorbic acid (DPPH = 4.28 µg/ml; ABTS = 38.84%). Furthermore, compound 3l demonstrated the strongest inhibition of α-amylase with a percent inhibition of 72.91 ± 0.14 compared to acarbose = 67.92 ± 0.09%. Similarly, it displayed acetylcholinesterase inhibition of 62.80 ± 0.06%. However, compound 3i showed a significantly higher inhibition percentage for protein denaturation and proteinase at 20.66 ± 0.00 and 26.42 ± 0.06%, respectively. Additionally, some in silico ADMET properties were predicted and studied. Finally, molecular docking simulation was performed inside the active site of α-amylase and acetylcholinesterase to study their interactions.


Subject(s)
Antioxidants , Diabetes Mellitus , Humans , Antioxidants/chemistry , Acetylcholinesterase/metabolism , Structure-Activity Relationship , Molecular Docking Simulation , Pyrimidines/chemistry , Iron/chemistry , Molecular Structure
5.
Molecules ; 25(23)2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33260954

ABSTRACT

Three new series of paracyclophanyl-dihydronaphtho[2,3-d]thiazoles and paracyclophanyl-thiazolium bromides were designed, synthesized, and characterized by their spectroscopic data, along with X-ray analysis. One-dose assay results of anticancer activity indicated that 3a-e had the highest ability to inhibit the proliferation of different cancer cell lines. Moreover, the hybrids 3c-e were selected for five-dose analyses to demonstrate a broad spectrum of antitumor activity without apparent selectivity. Interestingly, series I compounds (Z)-N-substituted-4,9-dihydronaphtho[2,3-d]thiazol-3(2H)-yl)-4'-[2.2]paracyclophanylamide) that are carrying 1,4-dihydronaphthoquinone were more active as antiproliferative agents than their naphthalene-containing congeners (series II: substituted 2-(4'-[2.2]paracyclophanyl)hydrazinyl)-4-(naphth-2-yl)-thiazol-3-ium bromide hybrids) and (series III: 3-(4'-[2.2]paracyclophanyl)amido-2-(cyclopropylamino)-4-(naphth-2-yl)thiazol-3-ium bromide) toward the SK-MEL-5 melanoma cell line. Further antiproliferation investigations of 3c and 3e on the healthy, normal unaffected SK-MEL-5 cell line indicated their relative safety. Compound 3c showed an inhibition of eight isoforms of cyclin-dependent kinases (CDK); however, it exhibited the lowest IC50 of 54.8 nM on CDK1 in comparison to Dinaciclib as a reference. Additionally, compound 3c revealed a remarkable downregulation of phospho-Tyr15 with a level (7.45 pg/mL) close to the reference. 3c mainly showed cell cycle arrest in the pre-G1 and G2/M phases upon analysis of the SK-MEL-5 cell line. The sequential caspase-3 assay for 3c indicated a remarkable overexpression level. Finally, a molecular docking study was adopted to elucidate the binding mode and interactions of the target compounds with CDK1.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , CDC2 Protein Kinase/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/pharmacology , Melanoma/drug therapy , Naphthols/pharmacology , Thiazoles/chemistry , Antineoplastic Agents/chemistry , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemistry , Humans , Melanoma/enzymology , Melanoma/pathology , Molecular Docking Simulation , Molecular Structure , Naphthols/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
6.
Molecules ; 25(13)2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32645912

ABSTRACT

A new series of methyl 2-(2-(4'-[2.2]paracyclophanyl)-hydrazinylidene)-3-substituted-4-oxothiazolidin-5-ylidene)acetates 3a-f were synthesized from the reaction of paracyclophanyl-acylthiosemicarbazides 2a-f with dimethyl acetylenedicarboxylate. Based upon nuclear magnetic resonance (NMR), infrared (IR), and mass spectra (HRMS), the structure of the obtained products was elucidated. X-ray structure analysis was also used as unambiguous tool to elucidate the structure of the products. The target compounds 3a-f were screened against 60 cancer cell lines. They displayed anticancer activity against a leukemia subpanel, namely, RPMI-8226 and SR cell lines. The activity of compound 3a was found as the most cytotoxic potency against 60 cancer cell lines. Consequently, it was selected for further five doses analysis according to National Cancer Institute (NCI) protocol. The cytotoxic effect showed selectivity ratios ranging between 0.63 and 1.28 and between 0.58 and 5.89 at the GI50 and total growth inhibition (TGI) levels, respectively. Accordingly, compound 3a underwent further mechanistic study against the most sensitive leukemia RPMI-8226 and SR cell lines. It showed antiproliferation with IC50 = 1.61 ± 0.04 and 1.11 ± 0.03 µM against RPMI-8226 and SR cell lines, respectively. It also revealed a remarkable tubulin inhibitory activity, compared to colchicine with IC50 = 4.97 µM/mL. Caspase-3, BAX, and Bcl-2 assays for 3a using annexin V-FITC staining revealed significant pro-apoptotic activity. Furthermore, multidrug-resistant leukemia SR cells were used to show better resistance indices (1.285 ng/mL, 1.15-fold) than the reference. Docking studies with ß-tubulin indicate that most of the tested compounds illustrated good binding at the colchicine binding site of the enzyme, especially for compound 3a, which made several interactions better than that of the reference colchicine.


Subject(s)
Antineoplastic Agents , Drug Design , Leukemia , Molecular Docking Simulation , Thiazoles , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Leukemia/drug therapy , Leukemia/metabolism , Leukemia/pathology , Neoplasm Proteins/metabolism , Thiazoles/chemical synthesis , Thiazoles/chemistry , Thiazoles/pharmacology
7.
Bioorg Med Chem Lett ; 28(5): 952-957, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29426771

ABSTRACT

As a part of a directed program for development of new active agents, novel heterocyclic derivatives with antipyrine and pyrazolone moieties -incorporated in- have been designed and synthesized. Starting with 4-arylidene-3-methyl-1-phenyl-5-pyrazolone derivative 2a,b novel Mannich bases derivatives have been synthesized and biologically evaluated for their anti-inflammatory activity. Furthermore, the activity of such compounds has been tested interestingly as COX-1 and COX-2 inhibitors. Structure elucidation of the synthesized compounds was attained by the use of elemental analysis, IR, 1H NMR, 13C NMR, and Mass spectrometry techniques. Compounds 3b, 3d and 4b represent the high % inhibition values for both COX-1 and COX-2. On the other hand, compound 8 showed little selectivity against COX-2 while compound 10 showed good selectivity against COX-1 only. Structure activity relationship has been discussed and the results were confirmed by molecular docking calculations.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antipyrine/pharmacology , Cyclooxygenase Inhibitors/pharmacology , Drug Design , Molecular Docking Simulation , Pyrazolones/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antipyrine/chemical synthesis , Antipyrine/chemistry , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Cyclooxygenase Inhibitors/chemical synthesis , Cyclooxygenase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Pyrazolones/chemical synthesis , Pyrazolones/chemistry , Structure-Activity Relationship
8.
Bioorg Chem ; 76: 188-201, 2018 02.
Article in English | MEDLINE | ID: mdl-29182950

ABSTRACT

Inflammation is a fundamental physiological process that is essential for survival of human being but at the same time is one of the major causes of human morbidity and mortality. In the past decade, numerous advances have taken place in the understanding and development of novel anti-inflammatory drugs. Therefore, investigation of newest anti-inflammatory agents is still a major challenge. In this study, novel and successfully synthesized naproxen-derivatives indicated powerful anti-inflammatory properties as potent of COX-1 and/or COX-2 inhibitors are reported. Results obtained revealed the presence of very potent derivatives with% inhibition of the oedema by 100% in addition to enzyme inhibition values that can reach 92%. The molecular docking and molecular dynamic calculations have been studied. Thus, new potent candidates for further investigation as prospective non-steroidal anti-inflammatory drug were proposed. Furthermore, twenty of the synthesized derivatives have been selected by the NCI, USA for anti-cancer screening and some of the tested compounds showed good% growth inhibition and some selectivity against some cell lines such as melanoma, non-small cell lung and colon cancer with GI% values ranging from 60.9 to 82.8%. Structure activity relationship has been performed and molecular modeling studies and molecular dynamic simulations have been performed for more explanation of the action of the synthesized compounds.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antineoplastic Agents/chemistry , Cyclooxygenase 2 Inhibitors/chemistry , Drug Design , Naproxen/analogs & derivatives , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Antineoplastic Agents/chemical synthesis , Cyclooxygenase 2 Inhibitors/chemical synthesis , Humans , Mice , Molecular Docking Simulation , Molecular Dynamics Simulation , NIH 3T3 Cells , Naproxen/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...