Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 2625, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38297102

ABSTRACT

The main aim of this study is to determine the physical and chemical properties of biochar synthesized from different materials (straw rice, sawdust, sugar cane, and tree leaves) at different pyrolysis temperatures (400, 600, and 800 °C). The physical and chemical properties such as moisture content, water holding capacity, bulk density, and porosity; and pH, electrical conductivity (EC), organic matter, organic carbon, total nitrogen, potassium, phosphorus, calcium, magnesium, sodium, and sulfur were determined, respectively. The results show that the biochar yield decreased with increasing pyrolysis temperature, and the values of the analyzed properties varied depending on the type of biochar and pyrolysis temperature. The moisture content ranged from 1.11 to 4.18%, and the water holding capacity ranged from 12.9 to 27.6 g water g-1 dry sample. The highest value of bulk density (211.9 kg m-3) was obtained from sawdust at a pyrolysis temperature of 800 °C. The porosity values ranged from 45.9 to 63.7%. The highest values of pH and EC (10.4 and 3.46 dS m-1) were obtained from tree leaves at a pyrolysis temperature of 800 °C. Total organic matter ranged from 66.0 to 98.1%, total organic carbon ranged from 38.3 to 56.9%, and total nitrogen ranged from 0.4 to 1.9%. The highest values of phosphorus and calcium content (134.6 and 649.0 mg kg-1) were obtained from sugar cane at a pyrolysis temperature of 800 °C. The magnesium, sodium and sulfur content had ranges of 10.9-51.7, 1124-1703 and 3568-12,060 mg kg-1, respectively.


Subject(s)
Calcium , Pyrolysis , Temperature , Magnesium , Charcoal/chemistry , Carbon , Water , Nitrogen , Phosphorus , Sodium , Sulfur
2.
Sci Rep ; 13(1): 14796, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37684304

ABSTRACT

The basil leaves were dried different sources of energy at different loading rates. Using hybrid solar drying compared to the conventional source of energy such as fossil and propane. Drying parameters were studied. Also, product quality was assessed under study treatments. The results indicated that the higher accumulated weight loss of basil leaves (75.56%) were obtained at 25 kg m-2 loading rate and solar drying system. The highest rate of the decrease in moisture content of basil leaves was happened at the 45 kg m-2 loading rates. Meanwhile, the lowest rate of the decrease in moisture content of basil leaves was found at 15 kg m-2 loading rates. The highest drying rate of basil leaves (219.54 gwater kg-1 h-1) was obtained at the loading rate of 15 kg m-2. The highest values of total chlorophyll and color of basil leaves 745.9 and 36.35 were found for solar dryer. The lowest values of total chlorophyll and color of basil leaves 703.5 and 31.66 were found for diesel dryer. The drying efficiency ranged from 33.98 to 40.33% for all batch loads. The highest essential oil yield obtained for solar dryer, the lowest essential oil yield occurred for diesel dryer. The highest value of volatile compounds with found for solar dryer. The total costs for basil drying were 19.73, 26.70 and 23.93 LE h-1 for solar, diesel and propane dryers, respectively. Also, the total costs of basil drying were 8.77, 13.15 and 12.27 LE kg-1 dried for solar, diesel and propane dryers, respectively.

3.
Toxicol Rep ; 10: 487-497, 2023.
Article in English | MEDLINE | ID: mdl-37396853

ABSTRACT

Heavy metal (HMs) levels were evaluated in aquacultured tilapia fish collected from two highly producing districts in Egypt (Kafr El-Sheikh and El-Faiyum Governorates) during two seasons (autumn 2021 and spring 2022). As well, health risk assessment of exposure to HMs in tilapia fish was studied. The results revealed that six HMs: As, Cu, Fe, Mn, Cr and Zn were predominant in fish samples of the first season (autumn 2021), while most of HMs were existed in samples of the second season. All samples of the two seasons were free of Hg. Notably, autumn season's fish samples showed higher concentrations of HMs than those of the spring season. As well, Kafr El-Sheikh farms were highly contaminated with HMs than those of El-Faiyum governorate. Risk assessment results indicated that the THQ values of As substantially exceeded 1 either for Kafr El-Shaikh samples (3.15 ± 0.5) or for El-Faiyum samples (2.39 ± 0.8) of autumn season. Meanwhile, THQ values for all HMs, in spring season 2021, were less than one whole. These results indicated a potential health risk arising from the exposure to HMs, As in particular, in fish samples of autumn season as compared to those of spring season. Therefore, there is a need for remedial applications, in such polluted aquacultures in autumn season, which are currently under investigation as an integral part of the research project that funded the current study.

4.
Int J Biol Macromol ; 222(Pt B): 1908-1917, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36202329

ABSTRACT

The occurring of glycation reaction and protein-protein interaction in the energy appetizers caused browning and hardness instability while storing these appetizers, leading to the loss of consumer acceptability. Amassing among anthocyanins and proteins could mitigate the appetizers' instability. We, therefore, investigated the anti-aggregation and ant-glycoxidation impacts of mulberry anthocyanins combined with ultrasonic treatment (UT) pre-texturization in an energy appetizer model throughout storage via multi-dimensional methods, containing UPLC-ESI-MS/MS, SDS-PAGE, FTIR, texture analyser, and a molecular docking analysis. Results noted that UT-anthocyanins significantly downgraded the browning progress, advanced glycation end-products, and/or N-(carboxymethyl)-l-lysine intensities of energy appetizers after 45 d of storage at 45 °C. UT-anthocyanins also relegated the protein insolubility, accumulation, oligomerization, and glycoxidation throughout the late storage. A molecular docking analysis evidenced that cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside networked with ß-lactoglobulin subunits via H-bonding and π-π forces. This binding hindered some glycoxidation residues of ß-lactoglobulin the lysyl residues. Finally, these findings recommended that the UT-anthocyanins could be employed as an encouraging antiglycative approach to alleviate AGEs-creation and other consequent undesirable fluctuations in protein-rich food patterns, thereby enhancing the energy appetizer's post-processing stability during storage.


Subject(s)
Anthocyanins , Morus , Anthocyanins/chemistry , Lactoglobulins , Tandem Mass Spectrometry , Molecular Docking Simulation , Morus/chemistry
5.
Toxicology ; 480: 153313, 2022 10.
Article in English | MEDLINE | ID: mdl-36113622

ABSTRACT

Scientific evidence has shown that fipronil induces oxidative stress and genotoxicity. Our study aimed to evaluate the potential oxidation in redox parameters and DNA, as well as determine the protective effect of date extract of increasing resistance to cellular damage. 30 Male albino rats were divided into six groups ( n = 5): 1) control group; 2) treatment group with date extract (1 g/kg B.W.); 3) treatment group with 1/20 LD50 of fipronil; 4) treatment group with 1/40 LD50 of fipronil; 5) treatment group with 1/20 LD50 of fipronil + 1 g/kg date extract; and 6) treatment group with 1/40 LD50 of fipronil + 1 g/kg dates extract. Date extract showed a high content of phenolic compounds and antioxidant properties. Fipronil increased 8-hydroxy-2-deoxyguanosine levels and lipid peroxidation by malondialdehyde but decreased the total antioxidant capacity in plasma. Moreover, glutathione, catalase, and superoxide dismutase levels in the liver and kidney decreased, along with histopathological abnormalities. Additionally, tail moment parameters of liver DNA and micronucleus frequencies in the bone marrow increased. This study showed that fipronil-induced various health hazards in vivo, whereas date extract alleviated the said toxicological effects. However, date extract failed to reduce genotoxicity.


Subject(s)
Antioxidants , Phoeniceae , Antioxidants/metabolism , Antioxidants/pharmacology , Catalase/metabolism , Deoxyguanosine/metabolism , Glutathione/metabolism , Lipid Peroxidation , Liver , Malondialdehyde/metabolism , Oxidative Stress , Phoeniceae/metabolism , Phytochemicals/metabolism , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Pyrazoles , Rats , Superoxide Dismutase/metabolism
6.
Foods ; 11(3)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35159640

ABSTRACT

Ice cream is a popular dessert product across the world. Structure, body, taste, and odor properties are created by adding non-milk ingredients and milk ingredients. The main aim of the study is to decrease the caloric value of ice cream by using sugar and fat replacements. Ice cream treatments were investigated based on microstructural, chemical, physical, microbiological, sensory, and calorific values. Four different ice creams were used (control ice cream (SC1), ice cream with stevia (SC2), ice cream with sucralose (SC3), and ice cream with sorbitol (SC4)). The chemical properties in all treatments of ice cream were significantly recorded (p < 0.05). The highest sucrose and fat levels were detected in the SC1 treatment compared with the other treatments (p < 0.05). The lowest fat and sugar amounts were observed in the SC2, SC3, and SC4 treatments (p < 0.05). The highest viscosity, overrun, and hardness values (p < 0.05) were detected in the control ice cream. Total aerobic mesophilic bacterial counts were not significantly recorded between different ice cream treatments (p < 0.05). The sensory scores were not significantly affected by sweeteners and bulk agents in the different treatments. The highest calorific value was calculated in the SC1 samples (p < 0.05). On the other hand, the lowest calorific value was calculated in SC2, followed by the SC3 and SC4 treatments. In scanning electron microscopy (SEM), the gel exhibited a homogeneous structure with a fine network within the SC2, SC3, and SC4 treatments, as it contained a cohesive structure with small-sized pores.

8.
IET Nanobiotechnol ; 14(7): 574-583, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33010132

ABSTRACT

The authors tested the efficacy of two salt nanoparticles (NPs), namely, copper dioxide (CuO) and tri-calcium phosphate [Ca3(PO4)2] to induce resistance in green bean pods against grey mould and white rot diseases caused by Botrytis cinerea and Sclerotinia sclerotiorum, respectively. High amounts of phytoalexins, kievitone, coumestrol, phaseollidin, 6-ά-hydroxyphaseollin, and phaseollin, were detected in naturally infected and artificially inoculated green bean pods in response to the tested NPs. Green bean plants treated in the field with CuO and Ca3(PO4)2 NPs had the highest mRNA quantity of all the studied defence genes, receptor-like kinase (PvRK20), pathogenesis-related protein (PR1), 1,3-ß-D-glucanase (pvgluc), polygalacturonase inhibitor protein (PvGIP), and alpha-dioxygenase (a-DOX) than that of the control group. CuO NPs followed by Ca3(PO4)2 NPs at 0.15 mg ml-1 were the most potent in increasing the transcriptomic levels of pk20, DOX, PR1, PvGIP, and pvgluc. Field applications of both chemical elicitor NPs exhibited a non-genotoxic effect on the Paulista green bean DNA using eight ISSR primers. The field application of the studied NPs could effectively extend the shelf life of green bean pods by up to 21 days at 7 ± 1°C during marketing and export due to its potent effect against grey mould and white rot diseases.


Subject(s)
Ascomycota , Botrytis , Fabaceae/metabolism , Fabaceae/microbiology , Nanoparticles/chemistry , Transcriptome , Agriculture , Cold Temperature , Copper/chemistry , Coumestrol/analysis , DNA/chemistry , DNA Primers/chemistry , DNA, Plant/chemistry , Fungi , Gene Expression Profiling , Isoflavones/analysis , Microscopy, Electron, Transmission , Mutagens , Particle Size , Plant Diseases , Pterocarpans/analysis , Sesquiterpenes/analysis , Software , Temperature , Phytoalexins
9.
Int J Biol Macromol ; 159: 1084-1093, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32442568

ABSTRACT

Cisplatin (cis-Diaminedichloroplatinum) is one of the most effective chemotherapeutic because of its anti-neoplastic properties against various types of tumor. However, it has a wide variety of side effects such as hepato, gastrointestinal, neuro, nephro, and cardiotoxicity (acute and/or chronic) that highly restricted its usage. Thus, research work was planned to detect the role of gold (AuNPs), silver nanoparticles (AgNPs) and their corepshell (Ag@AuNPs) as a carrier for blackberry extract and to enhance its benifit in treatment of cisplatin-induced cardiotoxicity. In our work, solid-state process was used in order to prepare these nanoparticles using pectin as an ecologically friendly-polymer acting as reductant for ions and at the same time as stabilizing agent for the produced nanoparticles. This nominated method for large-scale preparation of nanoparticles is simple, efficient, and convenient. The presence of individual metallic Ag, Au and both has been proven by UV-vis spectroscopy. Transmission electron microscopy (TEM) and particle size analyzer confirmed the preparation of spherical small size with a main diameter <40 nm. The data obtained from zeta potential evaluation displayed the well stabilization for the produced nanoparticles. Transmission electron microscopy (TEM), scanning electron microscopy (SEM) and particle size analyzer have verified that the spherical small size is <40 nm in diameter. Data from zeta potential assessment revealed the good stability of the produced nanoparticles. To this end, fifty sex rats were used in this study and divided into control, cisplatin (cispt), and five treated groups. After the experimental period, lipid profile was estimated and atherogenic coefficient (AC), atherogenic index (AI), and cardiac risk ratio (CRR) were calculated. Oxidant and antioxidant parameters were also estimated. Cardiovascular disease markers were estimated by ELISA. The mean levels of cholesterol, triglycerides, malondialdehyde (MDA), advanced oxidative protein products (AOPP), and cardiovascular markers were significantly increased in cispt group compared to control; whereas these parameters were attenuated in all treated groups in particular that received blackberry (bb) loaded Ag@AuNPs. Based on these results, it can be concluded that bb has antioxidant and antilipidemic effect that help in protecting against cardiovascular disease specially when loaded with Ag@AuNPs.


Subject(s)
Cardiotonic Agents/administration & dosage , Metal Nanoparticles/chemistry , Myocytes, Cardiac/drug effects , Pectins/chemistry , Plant Extracts/administration & dosage , Rubus/chemistry , Animals , Antineoplastic Agents/toxicity , Cardiotonic Agents/pharmacology , Cardiotoxicity , Cisplatin/toxicity , Gold/chemistry , Male , Plant Extracts/pharmacology , Rats , Silver/chemistry
10.
Invest New Drugs ; 38(5): 1303-1315, 2020 10.
Article in English | MEDLINE | ID: mdl-32048108

ABSTRACT

Diabetes with poor glycemic control is accompanying with an increased risk of disease namely atherosclerotic cardiovascular. Diosmin (DSN), which is obtained from citrus fruit used to assist the treatment of hemorrhoids or chronic venous atherosclerosis diseases, has an antioxidant, anti-hyperglycemic and anti-inflammatory effect. DSN is characterized by poor water solubility which limits its absorption by the gastrointestinal tract. To overcome this limitation, this study was designed to increase DSN bioavailability and solubility, through its loading on polymeric matrix; hydroxypropyl starch (HPS) and Poly lactide-glycolide-chitin (PLGA/chitin) to prepare Diosmin nanoparticles (DSN-NPs). Two methods were used to prepare DSN- NPs; Emulsion-solvent evaporation and Acid-base neutralization followed by further assessment on diabetes induced atherosclerosis The study was conducted on 50 animals assigned into 5 groups with 10 animals in each group: Group I: Normal rats received only normal saline, Group II: Diabetic rats, Group III: diabetic rats received oral DSN, Group IV: diabetic rats received DSN loaded HPS, Group V: diabetic rats received DSN loaded PLGA/chitin. Levels of total cholesterol, triglycerides, HDL-cholesterol, insulin, MDA and NO. plasminogen activator inhibitor-1 PAI-1), Paraoxonase-1(PON1), transforming growth factor-ß1 (TGF-ß1), NF-Ò¡B and Ang II were estimated. Our study revealed that, there was statistically significant difference between DSN treated group compared with DSN loaded HPS treated group and DSN loaded PLGA/chitin. Furthermore, the results obtained clearly disclosed no statistically significant difference between DSN loaded PLGA/chitin and control group exhibited DSN loaded PLGA/chitin has the higher ability to counteract the atherosclerosis factors induced by diabetes in all rats.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Antioxidants/administration & dosage , Atherosclerosis/drug therapy , Diabetes Mellitus, Experimental/drug therapy , Diosmin/administration & dosage , Nanoparticles/administration & dosage , Animals , Anti-Inflammatory Agents/chemistry , Antioxidants/chemistry , Aorta/drug effects , Aorta/metabolism , Aorta/pathology , Atherosclerosis/blood , Atherosclerosis/metabolism , Atherosclerosis/pathology , Chitin/administration & dosage , Chitin/chemistry , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diosmin/chemistry , Insulin/blood , Lipid Metabolism/drug effects , Male , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Nitric Oxide/metabolism , Polylactic Acid-Polyglycolic Acid Copolymer/administration & dosage , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Rats
11.
Colloids Surf B Biointerfaces ; 188: 110805, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31972444

ABSTRACT

The present study aimed to evaluate the influence of high throughput microcrystalline cellulose embedded silver nanoparticles (Ag-NPs), as an alternative eco-nematicide on Root-knot nematode (Meliodogyne incognita), which deem the main reason toward the loss of more than 20% in crops worldwide. In this work, Ag-NPs was prepared in very high concentration. Ag-NPs prepared using such technique has many advantages such as: absence of organic or solvents, scaling up thru using high concentration of silver precursor and utilization of environmentally benign polymer; Microcrystalline Cellulose (MCC). At the beginning, the bulk Ag-NPs colloidal solution is diluted to 5, 10, 15, 20, 25, 30, 40, 50, 60, 75, 80 and 100 ppm. Then, heavily galled roots of annual seed-propagated weed, Solanum nigrum L. family Solanaceae were selected to identify the Meloidogyne species and followed by treatment with the previously Ag-NPs concentrations. Results obtained after 24 h incubation, showed the highest mortality (M%) (40.36 ± 1.15%) which was achieved by means of 20 ppm of Ag-NPs compared with the highest concentration of Ag-NPs; 100 ppm (42.85 ± 3.51%). It was obviously noticed that, by increasing the concentration of Ag-NPs, M % decreased. On the other hand, after 48 h, 30 ppm Ag-NPs showed the highest M%; (52.82 ± 0.57%), while, after 72 h of treatments, the M% reached 95.53 ± 0.57% using 40 ppm Ag-NPs, then decreased to 66.67 ± 2.00% using 100 ppm Ag-NPs. All previous finding affirms the effectiveness of lower concentrations of Ag-NPs compared with the highest one, after 72 h. In conclusion, Ag-NPs could be successfully used as eco-nematicide for Root-knot nematodes; Meloidogyne incognita with a recommended dose of 20-40 ppm that is acquired higher M% and caused many aberrations during the different growth stages.


Subject(s)
Cellulose/pharmacology , High-Throughput Screening Assays , Metal Nanoparticles/chemistry , Silver/pharmacology , Tylenchoidea/drug effects , Animals , Antinematodal Agents , Cellulose/chemistry , Dose-Response Relationship, Drug , Particle Size , Silver/chemistry , Surface Properties
12.
Int J Biol Macromol ; 145: 1115-1128, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31678101

ABSTRACT

Aerogels are promisingly intended for the use in describing lighter solid materials with huge porous structures. The outcome of aerogels is of potential interest in biomedical purposes owing to many features such as high surface area, low density and porous structure, and so forth. There are numerous inorganic and organic materials employed in the preparation of aerogels. Many drying techniques are a fundamental part of their preparation such as supercritical, freeze-drying, vacuum, ambient pressure and microwave which have been utilized for drying the wet-gel via substitute the liquid inside the wet-gel pores with air. Three common lighter solid materials (i.e. aerogel, cryogel and xerogel) could be synthesized depending on the drying technique applied. This review focuses on aerogel definition, the steps for the preparation of aerogel, techniques used for drying the wet-gel platforms. Further it highlights the pros and cons of each drying technique for synthesizing a demanded material's properties. As polysaccharide considered as one of the most prominent biocompatible and environmentally friendly polymers used for their preparation, thus we will present some examples (e.g.; cellulose, chitosan, starch, alginate, carrageenan and curdlan) and finally the potential biomedical applications of polysaccharides-based aerogel are briefly emphasized.


Subject(s)
Desiccation/methods , Gels/chemistry , Polysaccharides/chemistry , Alginates/chemistry , Biomedical Technology , Carrageenan/chemistry , Cellulose/chemistry , Chitosan/chemistry , Cryogels/chemistry , Desiccation/instrumentation , Drug Delivery Systems , Freeze Drying , Pectins/chemistry , Porosity , Starch/chemistry , Tissue Engineering , beta-Glucans/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...