Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cardiol J ; 26(2): 147-156, 2019.
Article in English | MEDLINE | ID: mdl-30835327

ABSTRACT

BACKGROUND: Geographical differences in patient characteristics, management and outcomes in heart failure (HF) trials are well recognized. The aim of this study was to assess the consistency of the treat- ment effect of coenzyme Q10 (CoQ10) in the European sub-population of Q-SYMBIO, a randomized double-blind multinational trial of treatment with CoQ10, in addition to standard therapy in chronic HF. METHODS: Patients with moderate to severe HF were randomized to CoQ10 300 mg daily or placebo in addition to standard therapy. At 3 months the primary short-term endpoints were changes in New York Heart Association (NYHA) functional classification, 6-min walk test, and levels of N-terminal pro-B type natriuretic peptide. At 2 years the primary long-term endpoint was major adverse cardiovascular events (MACE). RESULTS: There were no significant changes in short-term endpoints. The primary long-term endpoint of MACE was reached by significantly fewer patients in the CoQ10 group (n = 10, 9%) compared to the placebo group (n = 33, 27%, p = 0.001). The following secondary endpoints were significantly improved in the CoQ10 group compared with the placebo group: all-cause and cardiovascular mortality, NYHA classification and left ventricular ejection fraction (LVEF). In the European sub-population, when compared to the whole group, there was greater adherence to guideline directed therapy and similar results for short- and long-term endpoints. A new finding revealed a significant improvement in LVEF. CONCLUSIONS: The therapeutic efficacy of CoQ10 demonstrated in the Q-SYMBIO study was confirmed in the European sub-population in terms of safely reducing MACE, all-cause mortality, cardiovascular mortality, hospitalization and improvement of symptoms.


Subject(s)
Heart Failure/drug therapy , Stroke Volume/physiology , Ubiquinone/analogs & derivatives , Aged , Biomarkers/blood , Chromatography, High Pressure Liquid , Dose-Response Relationship, Drug , Double-Blind Method , Europe/epidemiology , Female , Follow-Up Studies , Heart Failure/blood , Heart Failure/mortality , Humans , Male , Middle Aged , Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , Prospective Studies , Survival Rate/trends , Treatment Outcome , Ubiquinone/administration & dosage , Ubiquinone/pharmacokinetics , Ventricular Function, Left/physiology , Vitamins/administration & dosage , Vitamins/pharmacokinetics
2.
PLoS One ; 13(1): e0188620, 2018.
Article in English | MEDLINE | ID: mdl-29293507

ABSTRACT

We have identified a series of tetrahydrocarbazoles as novel P-type ATPase inhibitors. Using a set of rationally designed analogues, we have analyzed their structure-activity relationship using functional assays, crystallographic data and computational modeling. We found that tetrahydrocarbazoles inhibit adenosine triphosphate (ATP) hydrolysis of the fungal H+-ATPase, depolarize the fungal plasma membrane and exhibit broad-spectrum antifungal activity. Comparative inhibition studies indicate that many tetrahydrocarbazoles also inhibit the mammalian Ca2+-ATPase (SERCA) and Na+,K+-ATPase with an even higher potency than Pma1. We have located the binding site for this compound class by crystallographic structure determination of a SERCA-tetrahydrocarbazole complex to 3.0 Å resolution, finding that the compound binds to a region above the ion inlet channel of the ATPase. A homology model of the Candida albicans H+-ATPase based on this crystal structure, indicates that the compounds could bind to the same pocket and identifies pocket extensions that could be exploited for selectivity enhancement. The results of this study will aid further optimization towards selective H+-ATPase inhibitors as a new class of antifungal agents.


Subject(s)
Antifungal Agents/pharmacology , Carbazoles/pharmacology , Enzyme Inhibitors/pharmacology , P-type ATPases/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Antifungal Agents/chemistry , Candida/drug effects , Carbazoles/chemistry , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemistry , Hep G2 Cells , Humans , Hydrolysis , Membrane Potentials/drug effects , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , P-type ATPases/chemistry , Saccharomyces cerevisiae/drug effects
3.
J Neuroimmunol ; 180(1-2): 71-87, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16996144

ABSTRACT

Overall, the inflammatory potential of lipopolysaccharide (LPS) in vitro and in vivo was investigated using different omics technologies. We investigated the hippocampal response to intracerebroventricular (i.c.v) LPS in vivo, at both the transcriptional and protein level. Here, a time course analysis of interleukin-6 (IL-6) and monocyte chemotactic protein-1 (MCP-1) showed a sharp peak at 4 h and a return to baseline at 16 h. The expression of inflammatory mediators was not temporally correlated with expression of the microglia marker F4/80, which did not peak until 2 days after LPS injection. Of 480 inflammation-related genes present on a microarray, 29 transcripts were robustly up-regulated and 90% of them were also detected in LPS stimulated primary microglia (PM) cultures. Further in vitro to in vivo comparison showed that the counter regulation response observed in vivo was less evident in vitro, as transcript levels in PM decreased relatively little over 16 h. This apparent deficiency of homeostatic control of the innate immune response in cultures may also explain why a group of genes comprising tnf receptor associated factor-1, endothelin-1 and schlafen-1 were regulated strongly in vitro, but not in vivo. When the overall LPS-induced transcriptional response of PM was examined on a large Affymetrix chip, chemokines and cytokines constituted the most strongly regulated and largest groups. Interesting new microglia markers included interferon-induced protein with tetratricopeptide repeat (ifit), immune responsive gene-1 (irg-1) and thymidylate kinase family LPS-inducible member (tyki). The regulation of the former two was confirmed on the protein level in a proteomics study. Furthermore, conspicuous regulation of several gene clusters was identified, for instance that of genes pertaining to the extra-cellular matrix and enzymatic regulation thereof. Although most inflammatory genes induced in vitro were transferable to our in vivo model, the observed discrepancy for some genes potentially represents regulatory factors present in the central nervous system (CNS) but not in vitro.


Subject(s)
Encephalitis/physiopathology , Gene Expression/drug effects , Gliosis/physiopathology , Lipopolysaccharides/pharmacology , Microglia/drug effects , Transcriptional Activation/drug effects , Animals , Animals, Newborn , Antigens, Differentiation/immunology , Antigens, Differentiation/metabolism , Cells, Cultured , Chemokine CCL2/immunology , Chemokine CCL2/metabolism , Disease Models, Animal , Encephalitis/chemically induced , Encephalitis/immunology , Gene Expression/immunology , Gene Expression Profiling , Gliosis/chemically induced , Gliosis/immunology , Hippocampus/drug effects , Hippocampus/immunology , Hippocampus/physiopathology , Inflammation Mediators/pharmacology , Injections, Intraventricular , Interleukin-6/immunology , Interleukin-6/metabolism , Male , Mice , Mice, Inbred C57BL , Microglia/immunology , Oligonucleotide Array Sequence Analysis , Proteomics , RNA, Messenger/drug effects , RNA, Messenger/metabolism , Transcriptional Activation/immunology , Up-Regulation/drug effects , Up-Regulation/immunology
4.
J Neurochem ; 92(6): 1439-51, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15748162

ABSTRACT

CEP-1347 is a potent inhibitor of the mixed lineage kinases (MLKs), a distinct family of mitogen-activated protein kinase kinase kinases (MAPKKK). It blocks the activation of the c-Jun/JNK apoptotic pathway in neurons exposed to various stressors and attenuates neurodegeneration in animal models of Parkinson's disease (PD). Microglial activation may involve kinase pathways controlled by MLKs and might contribute to the pathology of neurodegenerative diseases. Therefore, the possibility that CEP-1347 modulates the microglial inflammatory response [tumour necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and monocyte chemotactic protein-1 (MCP-1)] was explored. Indeed, the MLK inhibitor CEP-1347 reduced cytokine production in primary cultures of human and murine microglia, and in monocyte/macrophage-derived cell lines, stimulated with various endotoxins or the plaque forming peptide Abeta1-40. Moreover, CEP-1347 inhibited brain TNF production induced by intracerebroventricular injection of lipopolysaccharide in mice. As expected from a MLK inhibitor, CEP-1347 acted upstream of p38 and c-Jun activation in microglia by dampening the activity of both pathways. These data imply MLKs as important, yet unrecognized, modulators of microglial inflammation, and demonstrate a novel anti-inflammatory potential of CEP-1347.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Carbazoles/pharmacology , Encephalitis/metabolism , Enzyme Inhibitors/pharmacology , Indoles/pharmacology , MAP Kinase Kinase Kinases/antagonists & inhibitors , Microglia/metabolism , Animals , Cell Line , Cells, Cultured , Cytokines/drug effects , Cytokines/metabolism , Down-Regulation/drug effects , Down-Regulation/physiology , Encephalitis/drug therapy , Encephalitis/physiopathology , Gliosis/drug therapy , Gliosis/metabolism , Gliosis/physiopathology , Humans , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Kinase Kinases/metabolism , Mice , Mice, Inbred C57BL , Microglia/drug effects , Transcriptional Activation/drug effects , Transcriptional Activation/genetics , Tumor Necrosis Factor-alpha/drug effects , Tumor Necrosis Factor-alpha/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...