Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Invertebr Pathol ; 200: 107973, 2023 09.
Article in English | MEDLINE | ID: mdl-37479057

ABSTRACT

Pollinators have experienced significant declines in the past decade, in part due to emerging infectious diseases. Historically, studies have primarily focused on pathogens in the Western honey bee, Apis mellifera. However, recent work has demonstrated that these pathogens are shared by other pollinators and can negatively affect their health. Here, we surveyed honey bees and 15 native bee and wasp species for 13 pathogens traditionally associated with honey bees. The native bee and wasp species included 11 species not previously screened for pathogens. We found at least one honey bee-associated pathogen in 53% of native bee and wasp samples. The most widely distributed and commonly detected pathogens were the microsporidian Nosema ceranae, the bacterium Melissococcus plutonius, and the viruses deformed wing virus and black queen cell virus. The prevalence of viruses was generally higher in honey bees than in native bees and wasps. However, the prevalence of M. plutonius and the brood fungus Ascosphaera apis was significantly higher in some native bee species than in honey bees. The data also reveal novel trends in the association between co-occurring pathogens in honey bees and native bees and wasps at the pathogen community level. These results can inform the assessment of risks that native pollinator species face from pathogen stress, and indicate that many non-viral pathogens, notably M. plutonius and N. ceranae, are far more widely distributed and commonly found in native bees and wasps than previously thought.


Subject(s)
Nosema , RNA Viruses , Viruses , Wasps , Bees , Animals , Prevalence
2.
Sci Total Environ ; 839: 156398, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35654201

ABSTRACT

Honey bees (Apis mellifera) are the current model species for pesticide risk assessments, but considering bee diversity, their life histories, and paucity of non-eusocial bee data, this approach could underestimate risk. We assessed whether honey bees were an adequate risk predictor to non-targets. We conducted oral and contact bioassays for Leioproctus paahaumaa, a solitary ground-nesting bee, and A. mellifera, using imidacloprid (neonicotinoid) and dimethoate (organophosphate). The bees responded inconsistently; L. paahaumaa were 36 and 194 times more susceptible to oral and topically applied imidacloprid than A. mellifera, but showed comparable sensitivity to dimethoate. Furthermore, the proposed safety factor of ten applied to honey bee endpoints did not cover the interspecific sensitivity difference. Our standard-setting study highlights the urgent need for more comparative inter-species toxicity studies and the development of standardized toxicity protocols to ensure regulatory pesticide risk assessment frameworks are protective of diverse pollinators.


Subject(s)
Insecticides , Pesticides , Animals , Bees , Dimethoate/toxicity , Insecticides/toxicity , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Pesticides/toxicity
3.
Sci Rep ; 12(1): 8809, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35614309

ABSTRACT

The parasitic mite Varroa destructor is a leading cause of mortality for Western honey bee (Apis mellifera) colonies around the globe. We sought to confirm the presence and likely introduction of only one V. destructor haplotype in New Zealand, and describe the viral community within both V. destructor mites and the bees that they parasitise. A 1232 bp fragment from mitochondrial gene regions suggests the likely introduction of only one V. destructor haplotype to New Zealand. Seventeen viruses were found in bees. The most prevalent and abundant was the Deformed wing virus A (DWV-A) strain, which explained 95.0% of the variation in the viral community of bees. Black queen cell virus, Sacbrood virus, and Varroa destructor virus 2 (VDV-2) played secondary roles. DWV-B and the Israeli acute paralysis virus appeared absent from New Zealand. Ten viruses were observed in V. destructor, with > 99.9% of viral reads from DWV-A and VDV-2. Substantially more variation in viral loads was observed in bees compared to mites. Where high levels of VDV-2 occurred in mites, reduced DWV-A occurred in both the mites and the bees co-occurring within the same hive. Where there were high loads of DWV-A in mites, there were typically high viral loads in bees.


Subject(s)
Parasites , RNA Viruses , Varroidae , Viruses , Animals , Bees , New Zealand , RNA Viruses/genetics
4.
Pest Manag Sci ; 75(1): 29-36, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29931787

ABSTRACT

BACKGROUND: The effects of chronic exposure to two neonicotinoids (clothianidin and imidacloprid) and two organophosphates (chlorpyrifos and dimethoate) on survival, developmental rate and larval weight of honey bee larvae reared in vitro were determined. Diets containing chemicals were fed to larvae with the range of concentrations for each compound based on published acute toxicity experiments and residues found in pollen and nectar, both components of the larval diet. RESULTS: Four concentrations of each compound and controls were tested: chlorpyrifos: 0.5, 0.8, 1.2, 8 mg/L; clothianidin: 0.1, 0.4, 2, 10 mg L-1 ; dimethoate: 0.02, 1, 6, 45 mg L-1 ; imidacloprid: 0.4, 2, 4, 10 mg L-1 ; positive control: dimethoate (45 mg L-1 ); solvent control: acetone or methanol; and negative control. A significant decrease in survival, relative to the solvent control, occurred in the 0.8, 1.2 and 8 mg L-1 chlorpyrifos, 0.4, 2 and 10 mg L-1 clothianidin, and 45 mg L-1 dimethoate diets, but not the imidacloprid diets. CONCLUSION: The treatment of larval diets with clothianidin, dimethoate and imidacloprid did not affect survival, developmental rate, or weight of immature honey bees; however, treatment with chlorpyrifos did. Overall, our results are valuable for evaluating the chronic toxicity of these pesticides to developing honey bees. © 2018 Society of Chemical Industry.


Subject(s)
Bees/drug effects , Insecticides/toxicity , Neonicotinoids/toxicity , Organophosphates/toxicity , Animals , Bees/growth & development , Chlorpyrifos/toxicity , Dimethoate/toxicity , Guanidines/toxicity , In Vitro Techniques , Larva/drug effects , Larva/growth & development , Nitro Compounds/toxicity , Thiazoles/toxicity , Toxicity Tests, Chronic
5.
J Econ Entomol ; 112(1): 60-66, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30388242

ABSTRACT

Beekeepers commonly supplement honey bee (Apis mellifera L.) colonies' nutrition with commercial pollen and nectar substitutes in an effort to encourage growth and reduce colony losses. However, there is a broad lack of understanding regarding the extent to which supplemental protein feeding affects honey bee colony health. We conducted a field study to determine if feeding protein substitutes affected colony strength and Nosema spp. spore intensity in commercially managed honey bee colonies. Seventy-five honey bee colonies were randomly assigned to one of six treatments (no supplemental protein, one of four commercially available protein supplements, or wildflower pollen supplement). The number of adult bees, the number of capped brood cells, and Nosema intensity were assessed prior to-, 4 wk post-, and 8 wk post-treatment. There was an overall decrease in Nosema intensity across all treatments over time. However, there were no statistically detectable differences in colony strength or Nosema intensity between any of the pollen feeding treatments and those of the negative control treatment. Thus far, multiple investigations regarding supplemental protein feeding have failed to provide a clear consensus on the impact that this practice has on honey bee colony strength or productivity. Additional research is needed to determine the impact, if any, that diet supplementation, including microbial and nutritional supplements, has on colony health, to better inform beekeepers' management decisions.


Subject(s)
Bees/physiology , Dietary Proteins , Dietary Supplements , Host-Pathogen Interactions , Nosema/physiology , Animals , Bees/microbiology
6.
Ecotoxicol Environ Saf ; 164: 283-288, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30125774

ABSTRACT

Chlorothalonil is a broad-spectrum fungicide and diflubenzuron is an insect growth regulator used to control many insect larvae feeding on agricultural, forest and ornamental plants. Honey bee larvae may be exposed to both via contaminated pollen, in the form of beebread, added to their diet by their adult nurse sisters. In this study, we determined how single (acute: 72 h mortality) and repeated (chronic: mortality until emergence as adults) exposure to chlorothalonil and diflubenzuron in their diet affected honey bee larvae reared in vitro. The tested doses of chlorothalonil (20, 100, or 200 mg/L) did not impact 72 h larval mortality acutely relative to that of the solvent control. The 72 h mortality of larvae exposed to 1.6 mg/L and higher doses of diflubenzuron acutely in their diet (47.2-63.9% mortality) was significantly higher than that of larvae fed the solvent control, with no predictable dose dependent pattern observed. In the chronic toxicity tests, consuming an artificial diet with 30 or 100 mg/L chlorothalonil and 0.8, 1.3 or 2 mg/L diflubenzuron significantly lowered the survival of honey bee larvae over that of larvae feeding on the solvent control diet. We calculated risk quotients (RQs) for both compounds using the data we generated in our experiments. Collectively, the RQs suggest that neither compound is likely to affect larval mortality directly at field relevant doses given that pollen composes only a fraction of the total larval diet. Nevertheless, our data do not preclude any sublethal effects that chronic exposure to either compound may cause.


Subject(s)
Diflubenzuron/analysis , Fungicides, Industrial/pharmacology , Larva/drug effects , Nitriles/analysis , Pesticides/analysis , Pollen/drug effects , Animals , Bees , Body Weight , Diet/veterinary , Pilot Projects , Risk , Solvents , Toxicity Tests, Chronic
7.
Parasitol Res ; 117(10): 3337-3339, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30094539

ABSTRACT

Varroa is an external parasitic mite of honey bees and is a vector of multiple viruses that can severely weaken or cause the failure of western honey bee colonies if untreated. Effective Varroa control is dependent upon a thorough understanding of Varroa biology, including how Varroa move between host colonies. Here, we highlight that drone (male) honey bees may also play a role in Varroa dispersal. Drones were collected and the number of Varroa per 100 drones was calculated for each of five drone congregation areas (mating sites). This study is the first to confirm that drones present at drone congregation areas do carry Varroa. Further experimentation is needed to determine the extent to which drone-mediated movement may play a role in Varroa life history and/or to develop practical management strategies to limit drone-mediated movement of Varroa between honey bee hives.


Subject(s)
Bees/parasitology , Varroidae/physiology , Animals , Bees/physiology , Female , Male , Reproduction , Sexual Behavior, Animal , Varroidae/classification , Varroidae/genetics
8.
Sci Rep ; 8(1): 5635, 2018 04 04.
Article in English | MEDLINE | ID: mdl-29618776

ABSTRACT

The effects of chronic exposure to common acaricides on Apis mellifera survival, developmental rate and larval weight were tested in the laboratory. Larvae were reared in vitro and fed a diet containing amitraz: 1.5, 11, 25 and 46 mg/L; coumaphos: 1.8, 6, 8 and 25 mg/L; or fluvalinate: 0.1, 1, 2.4 and 6 mg/L. The dependent variables were compared for groups feeding on treated diets and control diets: positive control, 45 mg/L dimethoate; solvent control; and negative control. Bee survival decreased in the 46 mg/L amitraz and 25 mg/L coumaphos treatments but not in any fluvalinate treatment. Furthermore, the developmental rate decreased in individuals treated with 46 mg/L amitraz. In our study, larvae exposed to acaricides at concentrations similar to maximum residue in pollen and honey/nectar had no detectable change in survival or developmental rate. Given that pollen and honey/nectar represent only a small part of larval diet, we suggest that residues of amitraz, coumaphos and fluvalinate at the levels we tested are unlikely to impact immature worker bee survival in the field, though our data do not preclude any sublethal effects that may result from bee exposure to these compounds or possible synergisms when they co-occur in bee colonies.


Subject(s)
Bees/growth & development , Body Weight/drug effects , Coumaphos/toxicity , Insecticides/toxicity , Larva/growth & development , Nitriles/toxicity , Pyrethrins/toxicity , Toluidines/toxicity , Animals , Bees/drug effects , In Vitro Techniques , Larva/drug effects
9.
Pest Manag Sci ; 73(11): 2282-2286, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28485079

ABSTRACT

BACKGROUND: The reported high loss rates of managed honey bee colonies have been attributed to diverse stressors including pesticides. Honey bee larvae can be exposed to pesticides in contaminated nectar, pollen and wax. Due to the difficulties of rearing larvae in vitro, research focusing on adult bee exposure to pesticides is more common than that on larva exposure to pesticides. Herein, we aimed to assess the acute toxicity of five insecticides to honey bee larvae using an improved in vitro rearing method. RESULTS: LC50 and LD50 were calculated for larvae at 72 h following a single diet exposure administered when the larvae were 84 ± 12 h old. Solvent control larval mortalities were less than 15% at 72 h. The LC50 values (mg L-1 ) for each tested pesticide were as follows: amitraz, 494.27; chlorpyrifos, 15.39; coumaphos, 90.01; fluvalinate, 27.69; and imidacloprid, 138.84. The LD50 values in µg per larva were 14.83 (amitraz), 0.46 (chlorpyrifos), 2.70 (coumaphos), 0.83 (fluvalinate) and 4.17 (imidacloprid). CONCLUSION: The toxicity of the test pesticides to honey bee larvae from most to least toxic was chlorpyrifos > fluvalinate > coumaphos = imidacloprid > amitraz. © 2017 Society of Chemical Industry.


Subject(s)
Bees/drug effects , Insecticides/pharmacology , Animals , Bees/growth & development , Larva/drug effects , Larva/growth & development , Lethal Dose 50
10.
PLoS One ; 11(8): e0161331, 2016.
Article in English | MEDLINE | ID: mdl-27518068

ABSTRACT

African honey bees (Apis mellifera scutellata) dramatically changed the South American beekeeping industry as they rapidly spread through the Americas following their introduction into Brazil. In the present study, we aimed to determine if the management of European-derived honey bees (A. mellifera sspp.) could reduce the relative abundance of African-matriline drones at regional mating sites known as drone congregation areas (DCAs). We collected 2,400 drones at six DCAs either 0.25 km or >2.8 km from managed European-derived honey bee apiaries. The maternal ancestry of each drone was determined by Bgl II enzyme digestion of an amplified portion of the mitochondrial Cytochrome b gene. Furthermore, sibship reconstruction via nuclear microsatellites was conducted for a subset of 1,200 drones to estimate the number of colonies contributing drones to each DCA. Results indicate that DCAs distant to managed European apiaries (>2.8 km) had significantly more African-matriline drones (34.33% of the collected drones had African mitochondrial DNA) than did DCAs close (0.25 km) to managed European apiaries (1.83% of the collected drones had African mitochondrial DNA). Furthermore, nuclear sibship reconstruction demonstrated that the reduction in the proportion of African matriline drones at DCAs near apiaries was not simply an increase in the number of European matriline drones at the DCAs but also the result of fewer African matriline colonies contributing drones to the DCAs. Our data demonstrate that the management of European honey bee colonies can dramatically influence the proportion of drones with African matrilines at nearby drone congregation areas, and would likely decreasing the probability that virgin European queens will mate with African drones at those drone congregation areas.


Subject(s)
Beekeeping , Bees/physiology , Behavior, Animal , Reproduction/physiology , Social Behavior , Animals , Bees/classification , DNA, Mitochondrial/genetics , Female , Male , Microsatellite Repeats/genetics
12.
Exp Appl Acarol ; 68(4): 509-15, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26704261

ABSTRACT

Varroa destructor Anderson & Trueman (Varroa) is a damaging pest of the Western honey bee, Apis mellifera, in North America, Europe, and Asia. However, Varroa infestations have not produced equivalent colony losses of African subspecies of honey bee throughout Africa and parts of the Americas. We surveyed the Varroa infestation rates (number of Varroa per 100 adult honey bees) in colonies of A. m. scutellata, A. m. capensis, and hybrids of the two subspecies throughout the Republic of South Africa in the fall of 2014. We found that A. m. scutellata colonies had significantly higher Varroa infestations than did A. m. capensis colonies. Furthermore, hybridized colonies of the two subspecies had Varroa infestations intermediate to those of A. m. scutellata and A. m. capensis. This is the first documentation of a clear difference in Varroa infestation rates of A. m. scutellata, A. m. capensis, and hybridized colonies in South Africa. Furthermore, our data confirm that Varroa populations in A. m. scutellata colonies are within the range of populations that are damaging to European honey bees.


Subject(s)
Bees/parasitology , Varroidae/physiology , Animals , Beekeeping , Seasons , South Africa , Species Specificity
13.
Respir Physiol Neurobiol ; 189(3): 543-51, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-23998999

ABSTRACT

Airway protections is the prevention and/or removal of material by behaviors such as cough and swallow. We hypothesized these behaviors are coordinated to respond to aspiration. Anesthetized animals were challenged with simulated aspiration that induced both coughing and swallowing. Electromyograms of upper airway and respiratory muscles together with esophageal pressure were recorded to identify and evaluate cough and swallow. During simulated aspiration, both cough and swallow intensity increased and swallow duration decreased consistent with rapid pharyngeal clearance. Phase restriction between cough and swallow was observed; swallow was restricted to the E2 phase of cough. These results support three main conclusions: 1) the cough and swallow pattern generators are tightly coordinated so as to generate a protective meta-behavior; 2) the trachea provides feedback on swallow quality, informing the brainstem about aspiration incidences; and 3) the larynx and upper esophageal sphincter act as two separate valves controlling the direction of positive and negative pressures from the upper airway into the thorax.


Subject(s)
Cough/complications , Deglutition/physiology , Respiratory System/physiopathology , Animals , Cats , Cough/etiology , Cough/pathology , Electromyography , Male , Physical Stimulation/adverse effects , Respiratory Muscles/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...