Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 32(40): 404005, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32434171

ABSTRACT

We demonstrate how image recognition and reinforcement learning combined may be used to determine the atomistic structure of reconstructed crystalline surfaces. A deep neural network represents a reinforcement learning agent that obtains training rewards by interacting with an environment. The environment contains a quantum mechanical potential energy evaluator in the form of a density functional theory program. The agent handles the 3D atomistic structure as a series of stacked 2D images and outputs the next atom type to place and the atomic site to occupy. Agents are seen to require 1000-10 000 single point density functional theory evaluations, to learn by themselves how to build the optimal surface reconstructions of anatase TiO2(001)-(1 × 4) and rutile SnO2(110)-(4 × 1).

SELECTION OF CITATIONS
SEARCH DETAIL
...