Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Biosci ; 7: 46, 2020.
Article in English | MEDLINE | ID: mdl-32274387

ABSTRACT

The L,L-diaminopimelate aminotransferase (DapL) pathway, a recently discovered variant of the lysine biosynthetic pathway, is an attractive pipeline to identify targets for the development of novel antibiotic compounds. DapL is a homodimer that catalyzes the conversion of tetrahydrodipicolinate to L,L-diaminopimelate in a single transamination reaction. The penultimate and ultimate products of the lysine biosynthesis pathway, meso-diaminopimelate and lysine, are key components of the Gram-negative and Gram-positive bacterial peptidoglycan cell wall. Humans are not able to synthesize lysine, and DapL has been identified in 13% of bacteria whose genomes have been sequenced and annotated to date, thus it is an attractive target for the development of narrow spectrum antibiotics through the prevention of both lysine biosynthesis and peptidoglycan crosslinking. To address the common lack of structural information when conducting compound screening experiments and provide support for the use of modeled structures, our analyses utilized inferred structures from related homologous enzymes. Using a comprehensive and comparative molecular dynamics (MD) software package-DROIDS (Detecting Relative Outlier Impacts in Dynamic Simulations) 2.0, we investigated the binding dynamics of four previously identified antagonistic ligands of DapL from Verrucomicrobium spinosum, a non-pathogenic relative of Chlamydia trachomatis. Here, we present putative docking positions of the four ligands and provide confirmatory comparative molecular dynamics simulations supporting the conformations. The simulations performed in this study can be applied to evaluate putative targets to predict compound effectiveness prior to in vivo and in vitro experimentation. Moreover, this approach has the potential to streamline the process of antibiotic development.

2.
Biophys J ; 114(5): 1009-1017, 2018 03 13.
Article in English | MEDLINE | ID: mdl-29539389

ABSTRACT

Traditional informatics in comparative genomics work only with static representations of biomolecules (i.e., sequence and structure), thereby ignoring the molecular dynamics (MD) of proteins that define function in the cell. A comparative approach applied to MD would connect this very short timescale process, defined in femtoseconds, to one of the longest in the universe: molecular evolution measured in millions of years. Here, we leverage advances in graphics-processing-unit-accelerated MD simulation software to develop a comparative method of MD analysis and visualization that can be applied to any two homologous Protein Data Bank structures. Our open-source pipeline, DROIDS (Detecting Relative Outlier Impacts in Dynamic Simulations), works in conjunction with existing molecular modeling software to convert any Linux gaming personal computer into a "comparative computational microscope" for observing the biophysical effects of mutations and other chemical changes in proteins. DROIDS implements structural alignment and Benjamini-Hochberg-corrected Kolmogorov-Smirnov statistics to compare nanosecond-scale atom bond fluctuations on the protein backbone, color mapping the significant differences identified in protein MD with single-amino-acid resolution. DROIDS is simple to use, incorporating graphical user interface control for Amber16 MD simulations, cpptraj analysis, and the final statistical and visual representations in R graphics and UCSF Chimera. We demonstrate that DROIDS can be utilized to visually investigate molecular evolution and disease-related functional changes in MD due to genetic mutation and epigenetic modification. DROIDS can also be used to potentially investigate binding interactions of pharmaceuticals, toxins, or other biomolecules in a functional evolutionary context as well.


Subject(s)
Computer Graphics , Molecular Dynamics Simulation , Proteins/metabolism , Software , Animals , Databases, Protein , Humans , Protein Conformation , Proteins/chemistry
3.
J Mol Evol ; 86(2): 91-102, 2018 02.
Article in English | MEDLINE | ID: mdl-29344693

ABSTRACT

Since the elucidation of the genetic code almost 50 years ago, many nonrandom aspects of its codon organization remain only partly resolved. Here, we investigate the recent hypothesis of 'dual-use' codons which proposes that in addition to allowing adjustment of codon optimization to tRNA abundance, the degeneracy in the triplet-based genetic code also multiplexes information regarding DNA's helical shape and protein-binding dynamics while avoiding interference with other protein-level characteristics determined by amino acid properties. How such structural optimization of the code within eukaryotic chromatin could have arisen from an RNA world is a mystery, but would imply some preadaptation in an RNA context. We analyzed synonymous (protein-silent) and nonsynonymous (protein-altering) mutational impacts on molecular dynamics in 13823 identically degenerate alternative codon reorganizations, defined by codon transitions in 7680 GPU-accelerated molecular dynamic simulations of implicitly and explicitly solvated double-stranded aRNA and bDNA structures. When compared to all possible alternative codon assignments, the standard genetic code minimized the impact of synonymous mutations on the random atomic fluctuations and correlations of carbon backbone vector trajectories while facilitating the specific movements that contribute to DNA polymer flexibility. This trend was notably stronger in the context of RNA supporting the idea that dual-use codon optimization and informational multiplexing in DNA resulted from the preadaptation of the RNA duplex to resist changes to thermostability. The nonrandom and divergent molecular dynamics of synonymous mutations also imply that the triplet-based code may have resulted from adaptive functional expansion enabling a primordial doublet code to multiplex gene regulatory information via the shape and charge of the minor groove.


Subject(s)
Codon/genetics , Codon/physiology , Silent Mutation/physiology , Amino Acids/genetics , Animals , Chromatin/genetics , Computer Simulation , DNA/genetics , DNA/metabolism , Evolution, Molecular , Genetic Code , Humans , Molecular Dynamics Simulation , Mutation , Protein Biosynthesis , RNA, Messenger/genetics , RNA, Transfer/genetics , Silent Mutation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...